

Assessing potential exposures to people in the post-closure period of a waste disposal facility

II. From present to future conditions



**Gerhard Proehl** 



# **From present to future conditions**

# Assessment for present conditions

#### **Environmental change**

- Climate
- Lifestyle
- Technology
- Agriculture/soil

# Assessment for future conditions







# Can exposure be assessed for long time frames?



# What will people do in 10000 years ?

• We don't know!

• But:

- -They will breathe.
- -They will drink.
- -They will eat.
- -They will stay outdoors or indoors.





How much will people eat, drink, breathe, in 10000 years ? • We don't know!

• But:

#### -They need similar amounts of

- Energy
- Protein
- Fat
- Minerals
- -They need similar amounts of drinking water
- -They will breathe similar volumes of air





Developed during the evolution of life over billions of years

# Physiological and biological process



**Biological processes are universal** 

Similar on all continents

Controlled by the same mechanisms Manifestation depends on environmental factors





Assumptions related to radiation protection criteria

### Radiation Protection criteria

 Derived for present day's populations based on current knowledge on radiation risks.

#### • Future progress in medicine may

- Modify the radio-sensitivity of people
- Modify the biokinetics of radionuclides in humans
- Improve the success of treatment or radiation-related diseases
- = > Such changes are not anticipated in the assessment





# Basic exposure scenarios

#### Subsistence farming

- All food consumed is produced on the area with the highest impact of radionuclides released from the disposal facility
- This is a very conservative assumption:
  Any other assumptions regarding food supply will cause lower exposures via intake of food

#### Agricultural practise

- Spectrum of crops and domestic to comply with the site characteristics
  - Soil properties should allow the cultivation of crops
  - Use of fertilizer to ensure long-term fertility

#### Sustainability of land use

- The scenario should allow a long-term land-use
  - Salinity of irrigation and drinking water
  - Availability of water







# How to address environmental changes when assessing exposures for the far future ?

# Impact on post-closure assessment





# What may change –

# Life-style

### • Food supply

- The basic scenario assumes complete self-supply,
  i.e 100% of the food consumed is produced
  locally
- This is a pessimistic assumption, the degree of self-supply cannot be higher
- Lower degrees of self-supply imply lower exposures to people

### • Food intake

- Demand for energy, fat and protein will remain constant
  - (physiological constraint)
- Impact of different diets to be explored by sensitivity analyses



# What may change –

# Agricultural practise/ soil

## Sustainability

- The basic scenario assumes sustainability of agriculture
  - Extreme conditions allowing agricultural use of land only for a short period of time are not considered
  - Soil cultivation will try to achieve favourable conditions for plant growth
    - pH-value: 5.0-7.5, depending on the crop
    - Porosity for exchange of air and drainage of water

#### **Consistency with site-specific conditions**

- The practices assumed should be consistent with the site-conditions
  - No irrigation on sites with sufficient precipitation
  - E.g. Husbandry of sheep in arid climates



# What may change –

# Technology

- Changes in technology are not explicitly taken into consideration
- Agricultural activities will ensure sustainability of land
  - This is a universal requirement
- Crops will be grown on soil, not in nutrient solutions



Climate change, a key element of long-term safety assessment

#### Climate

- Temperature
  - Seasonal and daily variation, days of frost, etc
- Precipitation
  - Seasonal and daily variation

#### Impact on plant growth

- Length of the vegetation period
- Crops grown
- Yield of crops
- Demand for irrigation
- Animal husbandry

#### Impact on the earth's surface

- Hydrology and hydrogeology
- Weathering of rocks
- Development of soils
- Wind and water erosion





### How to address climate?







# **Options to reflect future developments**





\*Neighbouring sites: Selected from a radius of about 3000 km

# **Option A:**

# Analogue approach

|  | RS | Gesellschaft für Anlagen-<br>und Reaktorsicherheit<br>(GRS) mbH                                                |  |
|--|----|----------------------------------------------------------------------------------------------------------------|--|
|  |    | Impact of climate<br>change on far-field<br>and biosphere<br>processes for a<br>HLW-repository<br>in rock salt |  |
|  |    |                                                                                                                |  |
|  |    |                                                                                                                |  |
|  |    | GRS - 241                                                                                                      |  |

- Use of data for present day conditions at a range of different sites with different climate and other characteristics
  - Sites are considered as suitable analogues for future development

#### It is assumed that

- this set of analogous biosphere systems adequately captures the relevant range of future systems
- => Envelope for future developments

# Option B: Dynamic analysis of future biosphere systems

AMBIO 2013, 42:383-392 DOI 10.1007/s13280-013-0405-7

Humans and Ecosystems Over the Coming Millennia: Overview of a Biosphere Assessment of Radioactive Waste Disposal in Sweden

KUNGL. VETENSKAPS-

AKADEMIEN

Ulrik Kautsky, Tobias Lindborg, Jack Valentin

- Modelling the evolution of the biosphere in response to the main environmental change drivers
  - Climate change
  - Geomorphological changes associated with sea-level change at coastal sites
  - Erosion in areas of geological uplift.

#### Modelling of the interaction of

- Climate
- Hydrology
- Landform
- Radionuclide release from the geosphere
- Radionuclide migration and accumulation
- Land-use

#### • Safety assessments need to consider future developments

- Principally, there is an inherent uncertainty to predict future conditions
- -However:

Biological processes are universal, following the same dependencies now and in the future

#### Climate

- Climate is a key driver for environmental changes with impact on
  - Agricultural practise
  - Soil development
  - Life style

#### Addressing future conditions

- Option A: Using current data from a wide range of environmental conditions to elaborate an envelope for future conditions
- Option B: Dynamic modelling of climate and landscape

