

Assessing potential exposures to people in the post-closure period of a waste disposal facility

III. Option A:Elaborating an envelope for future conditions –The analogue approach

Gerhard Proehl

Example for option A: Analogue approach

The site considered

Disclaimer

- The site considered does not refer to a site where a waste disposal facility is planned.
- The data have been taken from studies to explore the possible feasibility of a waste disposal facility at this location.
- The activities to study the site terminated in the early 2000s.

General characteristics of the area

- The site is located in Northern Germany.
- The distance to the sea is about 100 km.
- For estimating possible impacts a region is considered in the vicinity of the site with an area of about 100 km².
 - The altitude above sea level is 17-20 m.
 - Topography is flat with subdued relief.

Soil types

Soil type	Origin/horizons	Height of water table	Irrigation
Podsol-gley	Organic soils developed on fens, that dried out due to a decreasing groundwater level 0-38 cm: fine sand (2-4% organic matter O.M.)	3-10 m	Yes
Podsol (most important)	Wind borne sand over fluvial sediments 0-30 cm: fine sand (4-8 % O.M.)	1-2 m	Yes
Gley	Gley on fluvial sediments 0-30 cm: plough horizon (clayey silt) (2-4 % O.M.)	ca. 0.6-1.6 m	Νο

Present climate

- Reference station —Magdeburg (Germany)
- Climate classification (Köppen)

 Temperate, Cfb
 Relatively cool summers
 Mild winters
- Mean annual temperature -8.8°C
- Mean precipitation -520 mm/year

IAEA Specific Safety Guide 14 (SSG-14) Geological Disposal Facilities for Radioactive Waste

From the disposal area to the near-surface aquifer

- Radionuclides are released from the disposal
- Radionuclides migrate through the overlying rock
- Radionuclide contaminate the near-surface aquifer

From the near-surface aquifer to the biosphere

- Withdrawal of water via a well
- In case of high ground-water level, radionuclides may directly contaminate soils

Radionuclides enter the biosphere

Pathways for withdrawal of water from a well

ENEP

Pathways for rising ground water

Addressing future developments

University of Tsukuba

Transfer processes involved

Plant model irrigation

Plant model for rising groundwater

Relevant processes

	Geosphere-biosphere interface		
Contamination process	Well	Rising groundwater	
Transfer to plants			
Radionuclide uptake from soil	Х	Х	
Contamination due to resuspension	Х	Х	
Weathering	X		
Interception by plants during application of irrigation water	Х		
Translocation (systemic transport within the plant subsequent to foliar deposition)	Х		
Loss from soil			
Migration	X	Х	
Erosion	Х	Х	
Transfer to animals			
Drinking water for cattle	Х	Х	
Use of contaminated feed plants	Х	Х	
Contamination of air by resuspension			
Accumulation of radionuclides in the resuspendable soil fraction	Х	Х	
Transfer to freshwater fish			
Radionuclide uptake by fish	х	Х	
Attachment of radionuclides to particles and sedimentation	Х		

Conversiony of Isanaida

5

Dependency of processes

Process	Universal	Climate	Soil	Technology
	process			
Transfer to plants				
Amount of irrigation water		XXX	X	
Radionuclide uptake from soil			XX	x
Contamination due to resuspension		XXX	ХХХ	
Weathering	XXX	X		
Interception by plants during	XXX			
application of irrigation water				
Translocation (systemic transport	XXX			
within the plant)				
Loss from soil				
Migration		XX	XX	
Erosion		XX	XX	XX
Transfer to animals				
Drinking water for cattle		XX		х
Use of contaminated feed plants				x
Contamination of air by resuspension				
Accumulation of radionuclides in the			ХХХ	
resuspendable soil fraction				
Transfer to freshwater fish				
Radionuclide uptake by fish	XXX			
Attachment of radionuclides to	x			
particles and sedimentation				
Living habits				
Food and water intake		XX		Х
Time of staying out doors		Х		Х

University of Tsukuba

大学

Climate and irrigation

Temperature and CO₂ in the last 400 000 a

Maximum temperature variation: 12 K

Identification of locations in Europe that reflect variations of climate in the last 400000 years:

The Site and analogue sites considered to reflect climate change

ENEP Climate and scenarios considered

Site	Features	General characteristics	Mean tempe- rature	Mean precipi- tation	Well	Rising ground- water
Present day clin	nate at the site considered					
Magdeburg Cfb	Temperate	Cool summers Mild winters	8.8	520	x	X
Analogue climat	tes as an envelope for future	developments				
Rome Csa	Mediterranean hot summer climate	Hot summers Humid winters	15.5	800	X	-
Marrakesh BS	Steppe (semi-arid)	Hot summers	19.9	240	X	-
Rostow Dfa	Hot summer continental climate	Hot summers Cold winter	8.4	480	X	x
Turku Dfc	Subarctic (Boreal)	Cold summer Very cold winters	4.8	580	x	X
Vardo ET	Polar (Tundra)	Cold summer Very cold winters	1.6	540	x	x

Variation of mean temperature: 1.6 -19.9 K, $\Delta = 18.3$ K

Average monthly temperatures at the site and the analogue sites

Average monthly *precipitation* at the site and the analogue sites

ENEP Average monthly *relative humidity* at the site and the analogue sites

Irrigation

- A key process for radionuclides for entering the biosphere
- Dependence on soil and climatic conditions

- The water storage capacity of soils declines in the order clay > loam > sand
 - In **clay** soils, water is relatively strongly bound.
 - Loam soils provide the best conditions for water storage
 - In **sandy** soils, their water storage capacity is lowest.
- **Temperature, precipitation and relative humidity** determine the water deficit of a site
 - With increasing temperature, more water is lost by evaporation and transpiration of plants.
 - With increasing relative humidity the evapotranspiration and, subsequently, the water deficit decrease.

Precipitation, temperature und *water deficit* at the site and the analogue sites

皮大学 sity of Tsukuba

Typical irrigation regimes (I/m ² a)					
Marrakesh Morocco	Magdeburg, D	Rome, Italy	Rostow, Russia	Turku, Finland	Vardo, Norway
300-700	100-200	350-600	400-500	0-100	0

Irrigation needs

Aspects of long-term behaviour of radionuclides in soil

Speciation und mobility

- Sorption capacity
 - Clay, silt and sand
 - Organic matter
- pH-value

Redox potential

- Quantifies the oxygen status in soil
- Soil management aims to achieve the following conditions to optimize growth
 - Organic matter between 2-4 %
 - pH between 5.5 and 7.5
 - Redox potential between 100 and 600 mV
 - Optimize water supply
 - Enable soil aeration
 - Provide nutrients

Status of soil aeration	Redoxreaktion	Redoxpotential E _{h7} (mV)
Well aerated soils	Start of NO ₃ ⁻ - reduction Start of Fe ²⁺	450-550 350-450
Wet soils	O ₂ not detectable NO ₃ ⁻ not detectable Start of formation of Fe ²⁺	330 220 150
Water-logged soils	Reduction of SO ₄ ²⁻ , Production of S ²⁻ Start of the methane production Sulphate no longer detectable	-50 -120 -180

Sorption to inorganic soil components

- Clay > silt > sand
 - Very little dependence on pH

Temperate zone

- Young soils (~10 000 years) => low degree of weathering of clay minerals
- Clay minerals are negatively charged
- => Sorption of cations

• Tropical soils

- Old soils (~1 000 000 years) => extensive weathering of clay minerals
- Depletion of silicates
- Positively charged Al- and Fe-oxides remain
- Cation exchange capacity is very low
- => Sorption of anions

- Function
 - Storage of water
 - Loosening the soil => improves aeration
 - Sorption of nutrients

Composition

- Decomposed plant and animal material, very heterogeneous
 - Humus substances, humus acids: persistent organic compounds with a high molecular weight
 - Fulvic acids: mobile organic compounds, low molecular weight, complexing agent

Dissociation

Sorption of cations to carboxyl groups

- Strength comparable to acetic acid (pKs: ~ 4-5)
- Sorption decreases with pH

Interaction of climate and availability in soil

- Se-79, Tc-99, U-238 and Np-237 are most available in dry, well aerated soil
 - For wormer climates, bioavailability tends to increase
- I-129 is most available in wet organic soils
 - For wormer climates, bioavailability tends to decrease
- CI-36 is available over a wide range of soil conditions
 - Little influence of climate on bioavailability

Implications for long-term safety assessments

Scenario: Withdrawal of water from a well and irrigation of crops

- Irrigation of soils with a redox potential persistently lower than 100 mV is unlikely
- Such soils are either water-logged or have severe structural problems
- The optimal redox potential is near the maximum that can be achieved under normal atmospheric conditions
- This is also valid for any future conditions.
- Scenario: Contamination of soil due to rising groundwater
 - This scenario tends to coincide with wet or waterlogged soil
 - Bioavailability of Se-79, Tc-99, U-238, and Np-237 is lower as under dry conditions
 - I-129 tends to be more available

Transfer factor soil-plant and migration rates for the site considered

Radionuclide		Tı (Bq/kg fresl	Half-life in soil (a)					
	Grass	Maize	Cereals	Potatoes &	Leafy	Fruit	Arable land	Pasture (10
				roots	veget.	veget.	(25 cm)	cm)
CI-36	2	2	2	2	2	2	1	0.5
Ni-59	0.01	0.05	0.05	5E-3	5E-3	5E-3	100	40
Se-79	0.05	0.02	0.02	3E-3	3E-3	3E-3	50	20
Zr-93	2E-3	5E-4	1E-3	1E-4	4E-4	4E-4	100	40
Nb-94	4E-3	4E-3	4E-3	1E-3	2E-3	5E-4	100	40
Tc-99	1	0.1	0.1	0.1	1	0.3	5	2
Pd-107	0.03	0.03	0.03	5E-3	0.02	5E-3	100	40
Sn-126	5E-3	5E-3	5E-3	1E-03	3E-3	1E-3	100	40
I-129	0.1	0.01	0.01	0.01	0.01	0.01	100	40
Cs-135	0.05	0.02	0.02	0.05	0.05	0.02	100	40
Ra-226	0.02	1E-3	1E-3	0.01	0.01	0.01	100	40
Th-230	0.01	5E-4	2E-3	2E-4	1E-4	2E-4	200	80
Pa-231	5E-4	2E-4	2E-4	1E-4	3E-4	1E-4	200	80
U-238	2E-3	2E-3	2E-3	1E-3	5E-3	1E-3	200	80
Np-237	0.01	3E-3	3E-3	2E-3	2E-3	2E-3	100	40
Am-243	2E-4	2E-5	2E-5	1E-4	1E-4	1E-4	200	80
Pu-239	1E-4	1E-5	1E-5	1E-5	1E-4	1E-5	200	80

ENEP Based on considerations of water status, redox and pH Modification of transfer factors soil-plant for different climates – an indication to reflect future development

Radionuclide	Modification factor (Temperate well =1)							
	V	Vell	Rising gro	ound water				
	Steppe(BS), Mediterranean (Csa) Boreal (Dfa)	Boreal (Dfc), Tundra (ET)	Temperate (Cfb), Boreal (Dfa)	• •				
Cl-36	1	1	1	1				
Ni-59	1	1	1	1				
Se-79	10	1	1	0.3				
Zr-93	0.5	1	1	1				
Nb-94	0.5	1	1	1				
Тс-99	10	0.1	1	0.1				
Pd-107	0.5	1	1	1				
Sn-126	0.5	1	1	1				
I-129	0.5	1	10	10				
Cs-135	0.5	50	0.5	50				
Ra-226	0.5	0.5	1	0.5				
Th-230	0.5	1	1	1				
Pa-231	0.5	1	1	1				
U-238	3	1	1	1				
Np-237	5	1	1	1				
Am-243	0.5	1	1	1				
Pu-239	0.5	1	1	1				

Erosion

A long-term process causing degradation and formation of soils

Erosion:

Degradation of soil due to removal of soil material by wind and water

Erosion by water

- Kinetic energy of rain destroys soil aggregates
- Soil will be transported downhill

• Factors increasing water erosion

- Precipitation and contribution of heavy rain showers
- Slope
- High fraction of sand and silt
- Low content of clay and organic matter
- Poor vegetation
- Relevance
 - Up to 200 t/(ha*a) (=> 1 cm soil)

Erosion by water

- Rain splash affects the soil surface
- Creeks in a sloping field

Soil erosion due to overgrazing

Yellow River – Soil material from China's loess areas

了 University of Tsukuba

Wind erosion in Germany

- Wind erosion is noncontinuous process
- The annual loss of soil varies widely
- The loss within 10 or 20 years may be caused by one event combining
 - -Strong wind
 - Dry soil
 - No/little vegetation cover

University of Tsukuba

Wind erosion during sandstorms

• Sand cloud in Texas

• An enormous sand cloud spreads from the Sahara over the East Atlantic

Loess in China formed by sedimentation of eroded material

Erosion is not a continuous process

- Increasing relevance for high intensity events
 - Water erosion increases with
 - ... rainfall intensity and total amount of rainfall
 - … increasing slope
 - Wind erosion increases with
 - … increasing wind speed
 - … decreasing soil moisture
 - \Rightarrow Few events of
 - strong winds or
 - heavy showers
 - cause most of the erosion

ENEP Erosion and migration

* Migration is is equivalent to a half-life in the upper 25 cm soil layer of 200 y

Implications of erosion for long-term safety assessments

- Water and wind **erosion will cause removal** of soil and of radionuclides bound to soil
- Erosion **will cause a wider distribution** of radionuclides that have been applied with contaminated irrigation water
- Erosion **will reduce the maximum** radionuclide concentrations of soil

ENEP Migration in soil (K_d-approach)

Transport of radionuclides in soil is driven by

- Water movement in the soil
- Sorption and desorption processes
- Derivation from the sorption coefficient K_d
- Retardation of the radionuclide transport compared to the water transport

$$\lambda_{s} = \frac{V_{a}}{L \cdot (1 + \frac{\rho}{\Theta} \cdot K_{d})}$$

- λ_s = Annual loss rate of the radionuclide from the layer L
- v_a = Water velocity in the soil (m/a)
 - Thickness of the soil layer considered (m)
 - = Soil density (kg/m³)

ρ

 Θ = Water content of the soil

Migration of radionuclides attached to soil particles

K_d-approach

 Does not include the migration of radionuclides attached to soil particles

Relevant components

- Clay minerals, Fe-, Al- and Si-oxides
- Accumulation of clay in lower soil horizons can be observed in many soil types
- Migration is more important in acid soils (pH<6,5)
- Important in wet and periodically wet climates

Quantification of particle movement

- Of the order of 10 g/m² a
- It is a long-term process

ENEP Measured migration rates in soil (Bunzl, 92, 93, 94, 94a, 95)

Variation of K_d-values is larger than the measures migration rates

Modifications for different climates: Loss of soil due to erosion and migration to deeper soil layers

Climate	Half-life of radionuclides in soil due to erosion from the upper 25 cm (years)	Migration (relative values, temperate climate=1)
Temperate (Cfb)	1400	1
Mediterranean (Csa)	350	0.5
Steppe (BS)	140	0.2
Boreal (Dfa)	350	0.5
Boreal (Dfc)	1400	1
Tundra (ET)	1400	1

Erosion is particularly relevant for dry climates

Food intake rates for the different scenarios considered

Food item	Food intake rates (I a ⁻¹ , kg a ⁻¹)							
	Well. GW	Well, GW	Well	Well	Well, GW	Well	GW	
	Temperate	Mediterra.	Steppe	Boreal	Boreal	Tundra*	Tundra	
	Cfb	Csa	BS	Dfa	Dfc	ET	ET	
Drinking water	730	1100	1100	730	730	730	730	
Cereals	110	115	105	110	71	_*	-	
Potatoes/roots	55	107	93	55	84	-	113	
Leafy vegetables	13	56	34	13	51	-	7.7	
Fruit vegetables	75	84	12	75	-	-	16	
Milk	130	100	87	130	115	37*	37	
Beef	30	28	22	30	72	110*	110	
Pork	60	28	22	60	0	0	-	
Lamb	0	1,5	12	0	0	0	-	
Fish	1	0	0	1	14	0	36.5	
Fungi	-	-	-	-	-	-	7.7	
Berries	-	-	-	-	-	-	16	
Reindeer	-	-	-	-	-	-	110	
Reference site	Germany	Spain	Greece	Germany	Sweden	Kola pe	ninsula	

* Water is only used as drinking water for humans and animals (no irrigation)

- Values increase with increasing amounts of irrigation water
- Little impact of climate for Sn-126, Ra-226, Th-230, Pa-231, U-238, Np-237, Am-243, Pu-239

• Dominating contribution of drinking water for many radionuclides, in particular for colder climates

- Highest impact of climate for I-129 and Cs-137
- High availability of I and Cs in organic, acid soils

• Environmental conditions will have changed...

-when radionuclides from a waste repository may enter the biosphere
- Extrapolation of current conditions to the far future is too simple
 - Inherently uncertain and speculative
- Analogue approach
 - Selection a range of sites define an envelope for future exposure conditions
 - Representing different climates, agricultural conditions
- Long-term processes may cause relevant spreading of radionuclides in the environment
 - Migration of radionuclides in soil
 - Erosion with wind and water

• Results: Dose per unit radionuclide in water

- Potential exposures are higher for hot and dry climates
- For redox-sensitive radionuclides (Se-79, Tc-99, I-129, Np-237) pronounced differences between climates
- Ingestion is by far the dominating pathway
- For many radionuclides the intake of drinking water dominates
 => little difference between climates

Additional information

Interaction of climate and land use

Climate	Region (examples)	Natural vegetation	Land use	
Polar/subpolar	Polar region, High North of Eurasia and North America	Polar desert, tundra	No land use, Nomadism	
Boreal	Northern Eurasia Northern North America	Lichens, coniferous forests	Nomadism, grazing, farming	
Temperate, humid	Middle Europe, Eastern USA, Chile, Japan	Deciduous forests	Grazing, farming	
Temperate, dry	Inner Asia, Central USA	Steppe	Nomadism, extensive grazing, Dry farming	
Subtropical, rain during winter	Mediterranean region, California, SW Australia	Subtropical rain forest	Wine, olives, citrus, vegetables, wheat	
Subtropical, rain during the whole year	Southern USA, SE Asia, East Australia, Japan	Steppe, savannah	Intensive farming	
Dry Subtropical and Tropical Areas	Sahara, Arabia, North Chile, Inner Australia	Savannah	Nomadism, extensive grazing	
Tropics, rain during the whole year	Northern Brazil, East India, Africa at the equator	Tropical rain forest	Farming	

Climate of Japan

ENEP Times and development of soils

Object	Time
Half-life of ²²⁶ Ra	1 600 a
Half-life of ²³⁸ U	4.5*10 ⁹ a
Time since the last ice-age	15000 a
Age of "young soils" in Middle and Northern Europe, North America (podzol, brown earth, para-brown earth)	1000 - 20000 a
"Old soils" in tropical region (Oxisols)	10 ⁷ - 10 ⁹ a
Age of humins	Up to 5000 a
Development of an A-horizon	10-1000 a

Interaction of soil and climate

筑波大学 University of Tsukuba

Soil processes and radionuclides in soil

Process	Тс	Se	I	Cl	Np	U	
Leaching of Ca	-	-	-	-	Formation of mobile carbonate complexe		
Acidification	Immobilisation Mobilisation Immobilisat				Immobilisation		
(input of H ⁺ , loss of cations)							
Leaching of clay	Migration of radionuclides attached to clay, relevant for strongly sorbed cations						
Podzolisation	Mobilization and precipitation of DOC, Al, and Fe						
Leaching of silicates	Increasing absorption of anions Decreasing absorption of cations						
Erosion	Dislocation of radionuclides by water and wind						

ENEP Examples for annual erosion (in t ha⁻¹ a⁻¹) (A. Goudie 2007, Physical Geography)

	Natural land	Agricultural land	Uncovered soil
Australia	0-64	0.1-150	44-87
Belgium	0.1-0.5	3-30	7-82
China	0.1-2	150-200	280-360
India	0.5-5	0.3-40	10-185
UK	0.1-0.5	0.1-20	10-200
USA	0.03-3	5-170	4-9

10 t ha⁻¹ a⁻¹: ca. 0.7 mm a⁻¹

Activity of soil organisms

- Borrowing animals as voles, rabbits, earthworm continuously mix the soil
- Development of the root system has a mixing effect
- Effects
 - Improved aeration of soil
 - Formation of organo-mineral complexes
 - Increasing the soil stability and improving the porosity
 - Increase of porosity, formation of pathways allowing the transport of particle-bound radionuclides

ENEP Turnover of soil due to activities of soil animals

Animal	Substrat	Annual turnover (kg/m² a)	
Earthworm	Garden soil	1	
	Pasture	2-4	
	Orchard/Forest	2-3	
	Forest meadow	7-8	
Ant	Forest	5	
Isopods	Semi desert	0.15	
Vole	Forest	1.2-12	
Termites	Savannah	6	
Ground squirrel	Semi dessert	0,15	

Scheffer and Schachtschabel: Soil Science, 1982 (In German)

Turnover: a few percent per year

General trends of effects of climate change on soil properties

Feature	Temperatu	re increase	Temperatu	r decrease	
	Humid	Arid	Humid	Arid	
Organic matter	\checkmark	1	1	1	
Effect on radionuclide behaviour	Mobilisation	lmn	obilisation		
Weathering	1	\checkmark	1	\checkmark	
Effect on radionuclide behaviour	Lower sorption of cations	No general trend	Lower sorption of cations	No general trend	
pH-Wert	\checkmark	1	\mathbf{V}	-	
Effect on radionuclide behaviour	Mobilisation	No general trend	Mobilisation	No general trend	
Percolating water	1	\checkmark	1	\checkmark	
Effect on radionuclide behaviour	Migration in soil increases	Migration in soil decreases	Migration in soil increases	Migration in soil decreases	
Erosion	1	<u>↑</u>	1	↑	
	Water erosion increases	Wind erosion increases	Water erosion increases	Wind erosion increases	
				University of Tsukub	