

Radioactivity and radiation exposure from natural sources

Gerhard Proehl

ENEP What is radioactivity?

Radioactivity is the phenomenon of

 Disintegration of atomic nuclei and the simultaneous emission energetic radiation

Elements and isotopes

- -Atom nuclei comprise of protons and neutrons
- -An element is defined by the number of protons
 - The number of neutrons varies, therefore any element has different isotopes
 - Non-stable isotopes of an element are called radio-isotopes
 - Radioactive atoms are called radionuclides
- -There are 118 elements
 - Only 80 elements have stable isotopes
 - In total, there are about 1000 radionuclides

ENEP Characterisation of radionuclides

The decay of a radionuclide is specific

-Radiation type

- Alpha-radiation: helium-nucleus (2 protons, 2 neutrons)
- Beta-radiation: electrons
- Gamma-radiation: electro-magnetic radiation

- Energy of the radiation emitted

- Measured in units of electron-volt [eV, keV, or MeV]
- The emission of alpha- and beta-radiation is usually accompanied by the emission gamma-radiation

Origin of radionuclides

- Primordial radionuclides exist since the creation of the Earth
- Cosmogenic radionuclides are generated due to interaction of cosmic radiation with atoms at high altitudes
- Man-made radionuclides are generated in nuclear installations as nuclear power plants, research reactors and accelerators

ENEP Every radionuclide is characterised by its physical half-life

Half-lives vary from very small fractions of seconds to billions of years

Types of radiation and characteristics

• Alpha radiation

- Relatively large particles:
- -Range in air:
- -Range in water:

Beta radiation

- -Small particles:
- -Range in air:
- Range in water:
- Gamma-radiation
 - Electro-magnetic radiation
 - Range in air:

- some 100 m
- -Range in water: some 10 cm
- X-rays

-Similar characteristics as gamma-radiation

He-nucleus (2 protons. 2 neutrons) few cm

Fraction of 1 mm

electrons some 10 cm to some meters few mm

C: ENEP Activity and radiation dose

Unit for activity

1 Bq

= 1 decay per second

Unit for dose

1 mSv

C: ENEP Effects of ionizing radiation

Ionisation of atoms

- Formation of free radicals

Interaction of radicals with cells

- Damage of the cell nucleus
- Damage of DNA

• Possible effects

- -Cell killing
- Malignant degeneration => formation of a cancer cell
- Mutations

\Rightarrow Therefore we need radiation protection

ENEP Range of gamma-radiation and of x-rays

Thickness of a layer reducing the radiation by 50 %

Photon energy		Material		
	Air	Water	Concrete	Lead
20 keV		8 mm	0.1 mm	0.005 mm
50 keV		2 cm	2 mm	0.02 mm
100 keV	37 m	4 cm	7 mm	0.1 mm
200 keV		7 cm	2 cm	0.4 mm
500 keV	66 m	8 cm	3.4 cm	4 mm
1 MeV	90 m	10 cm	4.6 cm	9 mm
2 MeV	130 m	14 cm	6.6 cm	1.3 cm
5 MeV	210 m	23 cm	10 cm	1.4 cm

The relevant gamma-energy for Cs-137 is 662 keV.

Natural radionuclides in the body

Intake via food and drinking water

- Natural decay chains
- Primordial radionuclides (existing since Earth's creation)
- -Cosmogenic radionuclides (generated by cosmic radiation)

• Most important radionuclide ⁴⁰K (potassium-40)

- Typical ⁴⁰K-concentration
 - Milk 50 Bq/kg
 - Meat 50 100 Bq/kg
 - Vegetables 30 150 Bq/kg
- -⁴⁰K intake with food: 90 Bq per day
 - ⁴⁰K-activity in the body: 4.000 Bq per body
 - Effective dose from ⁴⁰K in foods: 0.15 mSv per year

Effective dose from all natural radionuclides in the body

– 0.3 mSv/a

Primordial radionuclides

Radionuclide	Half-life (years)	Radionuclide	Half-life (years)	Radionuclide	Half-life (years)
K-40	1.3 × 10 ⁹	Cd-116	2.6 × 10 ¹⁹	Sm-147	1.1 × 10 ¹¹
V-50	1.4 × 10 ¹⁷	In-115	4.4×10^{14}	Sm-148	7.0 × 10 ¹⁵
Ge-76	1.5 ×10 ²¹	Te-123	1.2 × 10 ¹³	Gd-152	1.1 × 10 ¹⁴
Se-82	1.0 × 10 ²⁰	Te-128	7.2 × 10 ²⁴	Lu-176	2.6 × 10 ¹⁰
Rb-87	4.8 × 10 ¹⁰	Te-130	2.7 × 10 ²¹	Hf-174	2.0 × 10 ¹⁵
Zr-96	3.9 × 10 ¹⁹	La-138	1.1 × 10 ¹¹	Ta-180	1.2 × 10 ¹⁰
Mo-100	1.2 × 10 ¹⁹	Nd-144	2.3 × 10 ¹⁵	Re-187	5.0 × 10 ¹⁰
Cd-113	9.0 × 10 ¹⁵	Nd-150	1.7 × 10 ¹⁹	Os-186	2.0 × · 10 ¹⁵
				Pt-190	6.5 × 10 ¹¹

Radionuclide	Half-life	Radionuclide	Half-life
Tritium (H-3)	12.3 y	Silizium-32 (Si-32)	101 y
Beryllium-7 (Be-7)	53.3 d	Phosphorus-32 (P- 32)	14.3 d
Beryllium-10 (Be-10)	1.6 × 10 ⁶ y	Argon-39 (Ar-39)	269 y
Carbon-14 (C-14)	5730 y	Krypton-81 (Kr-81)	2.1 × 10⁵ y
Sodium-22 (Na-22)	2.6 y	Krypton-85 (Kr-85)	10.7 y

Terrestrial exposure

- Radionuclides in rocks, soil, construction material. plants
- 0.4 mSv per year

Inhalation of radon

- Radioactive noble gas emanating from soil and construction materials
- Exposure varies widely
 - 1-10 mSv per year

ENEP Natural exposure - cosmic radiation

学

Internal exposure

- Intake with food
- Most important: potassium-40 (K-40)
- Exposure: 0.3 mSv per year

Natural radiation exposure (UNSCEAR 2008)

Source	Annual effective Dose (mSv/a)		
	Mean	Range	
Ingestion	0.3	0.2 - 1	
⁴⁰ K U- und Th- decay chains Cosmogenic radionuclides	0,17 0,12 0,01		
Inhalation	1.256	0.2 - 10	
U- Th–decay chain Radon (²²² Rn/ ²²⁰ Rn and decay chains.)	0,006 1,25		
External exposure	0.87	0.6 - 2	
Cosmic radiation (at sea level) Natural radionuclides in soil	0,39 0,48	0,3 - 1 0,3 - 1	
Total	2.4	1 - 13	

Main source:

Diagnostic applying x-rays and computer tomography

Examples:	mSv pro per image
• Tooth	up to 0.01
 Extremities 	0.01 bis 0.1
• Abdomen	0.5 bis 1.0
 Lumbar spine (in 2 levels) 	0.8 bis 1.8
• Head – CT	2 bis 4
• Spine – CT	2 bis 11

10 bis 25

• Abdomen – CT

筑波大学 University of Tsukuba

Medical exposure (global average)

Natural exposure 2.4 mSv/a

Medical exposure 0.6 mSv/a

UNSCEAR 2008

United Nations Scientific Committee on the Effects of Atomic Radiation

Natural exposure varies widely

- Global average
 - Annual dose 2.4 mSv/a
 - Life-time dose (80 a): ≈ 200 mSv
- Global range:
 - Annual dose 1-13 mSv/a
 - Life-time dose: ≈ 80 1000 mSv

The level of natural exposure and its variation

 One (but not the only one) yardstick to evaluate the relevance of exposures from other sources

