

Long-term trends of radionuclides in foodstuffs

Gerhard Proehl

Long-term trends of Cs-137–activities in foodstuffs

Ecological half-lives

- Decrease of activity in an environmental medium due to *natural* processes
 - Fixation by soil particles and reduction of bioavailability
 - Migration into deeper soil laters
 - Loss of activity from soil due to erosion
- Radioactive decay causes an additional reduction
 - The decline of activities in foodstuffs is faster than the radioactive decay
- Ecological half-lives derived from the analysis of monitoring data in Europe
 - -Weapons' fallout
 - -Post-Chernobyl

¹³⁷Cs-activity in milk (South Germany)

1965-1985

1989-1999

Ecological half-life: 4.5 years

Effective half-life (including decay): 3.9 years

Ecological half-life: 5.9 years

Effective half-life (including decay): 4.9 years

ENEP Mean ecological half-lives (Belarus, Russia, Ukraine)

Crop	Soil Group	Half-lives, years		
Cereal	Sand	7-11.8		
	Loam	5.1-22.0		
	Clay	14.4-40.4		
	Peat	9.2-14.4		
Potato,	Sand	7.0-9.2		
Beetroot	Loam	10		
	Clay	13.3		
	Peat	10		
Perennial Grasses	Sand	6.4		
	Loam	4.0		
	Clay	9.8		
	Peat	17.3		
Natural Grasses	Sand	5.8		
	Loam	18.0		
	Clay	13.3		
	Peat	17.3		

IAEA Chernobyl Forum Report, 2006; in IAEA TECDOC 1616

Ecological half-lives in plants after the Chernobyl accident

EN	Soil Group	The fi	rst period. 1987-1989		The secor	nd period, 198	<mark>89-1999</mark>	
		$T_{1/2}^{eco}$	$F^*_{v}(0)$	R^2	$T_{1/2}^{eco}$ 1	$F^{*}_{v}(0)$	R^2	
				Barley				Fesenko et al.,
	Sand	1.3	4.3×10^{-1}	9.9×10^{-1}	6.2	1.4×10^{-1}	6.5×10^{-1}	Rad.Prot.Dosim.
	Loam	1.9	2.1×10^{-1}	9.8×10^{-1}	6.7	9×10^{-2}	7.1×10^{-1}	69 (1997), p. 289,
	Clay	1.4	1.7×10^{-1}	9.8×10^{-1}	3.8	7×10^{-2}	8.7×10^{-1}	in IAEA TECDOC-
				Potato				1616 (2009)
	Sand	1.2	5.7×10^{-1}	8.8×10^{-1}	7.5	1.2×10^{-1}	9.9×10^{-1}	
	Loam	2.4	1.4×10^{-1}	9.8×10^{-1}	8.5	1×10^{-1}	$(2.0 \times 10^{-1})^*$	
	Clay	2.9	7×10^{-2}	9.5×10^{-1}	5.0	4×10^{-2}	6.4×10^{-1}	
				Beetroot				
	Sand	2.9	3.2×10^{-1}	9.2×10^{-1}	5.2	2.9×10^{-1}	8.3×10^{-1}	
	Loam	2.6	2.5×10^{-1}	8.2×10^{-1}	5.9	1.2×10^{-1}	9.8×10^{-1}	
	Clay	2.9	1.8×10^{-1}	7.2×10^{-1}	7.2	1.5×10^{-1}	9.6×10^{-1}	
			N	atural Grasses				
	Sand	1.6	2.9×10^{1}	9.9×10^{-1}	1.5×10^1	1.8×10^{1}	8.7×10^{-1}	
	Loam	1.3	7.0	9.9×10^{-1}	4.7	2.3	$(3.7 \times 10^{-1})^*$	
	Clay	1.3	3.6	9.9×10^{-1}	4.9	1.4	5.6×10^{-1}	
	Organic	1.8	8.3×10^{1}	8.4×10^{-1}	1.1×10^{1}	3.0×10^{1}	7.2×10^{-1}	
			Pe	rennial Grasse				
	Sand	2.3	1.2×10^{1}	9.9×10^{-1}	4.8	3.5	9.1×10^{-1}	
	Loam	2.5	1.2×10^{1}	9.5×10^{-1}	4.6	6×10^{-1}	6.0×10^{-1}	
	Clay	2.5	1.9	9.5×10^{-1}	1.0×10^{1}	6.5×10^{-1}	6.6×10^{-1}	
	Organic	2.6	2.3×10^{1}	9.9×10^{-1}	2.1×10^{1}	9.9	$(2.1 \times 10^{-1})^*$	第二次
								University of Tsukuba

*-insufficient data for adequate estimation.

Decline of ¹³⁷Cs-levels in food and water

Smith, J.T. et al. (2000) Chernobyl's legacy in food and water. Nature, 405.

University of Tsukuba

Ecological half-life: 10.5 years Effective half-life (including decay): 7.8 years

¹³⁷Cs in wild boar collected in South Germany (1986 to 1999)

Time-dependence of ¹³⁷Cs-TFs for brown and white rice in Japan

S. Fesenko, N. Sanzharova, K. Tagami: Evolution of plant contamination with time (IAEA-TECDOC 1616), 2009)

Summary of ecological half-lives for Cs

Plants and animal food products on agricultural land - 4 to 6 years

Pasture

- In the first 5-6 a after deposition:
 - **1 4 years**
- Afterwards: **5 15 years**
- Slower decline for vegetation on <u>peat</u> and mineral soils <u>low in clay</u> minerals.

Forest products (Roe deer, deer, wild boar, forest plants, berries, fungi (Middle Europe))

- Average: 12 years
- In some areas much longer