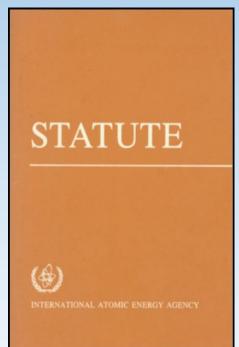


Gerhard Proehl

Safety Standards for the Management of Radioactive Waste

IAEA: International Atomic Energy Agency

Founded in 1957 by the United Nations


Article III, *Functions* Paragraph A.6.

" To **establish** or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned,

standards of safety for protection of health and

minimization of danger to life and property (including such standards for labour conditions), and

to provide for **the application of these standards** to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency ...; "

Statute 1957

IAEA Safety Standards Categories

IAEA Safety requirements and standards

IAEA Safety Standards

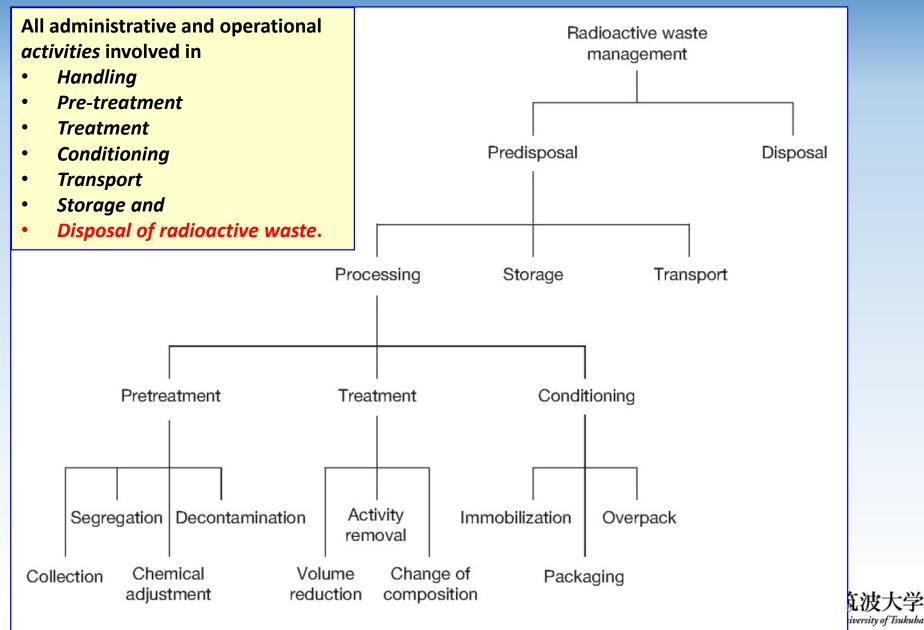
for protecting people and the environment

Disposal of Radioactive Waste

Specific Safety Requirements

No. SSR-5

Safety Standards on Safety Assessment


	IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards
	for protecting people and the environment	for protecting people and the environment	for protecting people and the environment
IAEA Safety Standards for protecting people and the environment	Predisposal Management of Radioactive Waste	Disposal of Radioactive Waste	Decommissioning of Facilities
Safety Assessment for	General Safety Requirements Part 5	Specific Safety Requirements	General Safety Requirements Part 6
Facilities and Activities	No. GSR Part 5	No. SSR-5	No. GSR Part 6
General Safety Requirements	IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards
No. GSR Part 4 (Rev. 1)	for protecting people and the environment	for protecting people and the environment	for protecting people and the environment
	The Safety Case and Safety Assessment for the Predisposal Management of Radioactive Waste	The Safety Case and Safety Assessment for the Disposal of Radioactive Waste	Safety Assessment for the Decommissioning of Facilities Using Radioactive Material
	General Safety Guide	Specific Safety Guide	Safety Guide
	No. GSG-3	No. SSG-23	No. WS-G-5.2

Radioactive Waste Management

ENEP

 \mathbf{O}

マ学

ENEP ! Storage is only a temporary solution

Storage is not sustainable in the long term

- -Requires active controls for safety and security
- On-going responsibilities and costs (e.g. for maintenance, refurbishment, monitoring, security)

• Events and developments with impact on the safety of storage

- -Human-induced
 - Wars and terrorism
 - Urban growth
 - ...
- -Natural:
 - Storms and floods
 - Earthquakes
 - Volcanic eruptions

for protecting people and the environment

Geological Disposal Facilities for Radioactive Waste

Specific Safety Guide No. SSG-14

- Overview of geological disposal and its implementation
- Legal and organizational infrastructure
- Safety approach
- The safety case* and safety assessment
- Elements in a stepwise approach to the development of a geological disposal facility

*Safety Case: A comprehensive evaluation of the safety assessment

- Findings of a safety assessment and a statement of confidence in these findings.
- Addressing weak points of the safety assessment and how to overcome them

Timeline of the development of a geological disposal facility (IAEA Safety Standard SSG-14)

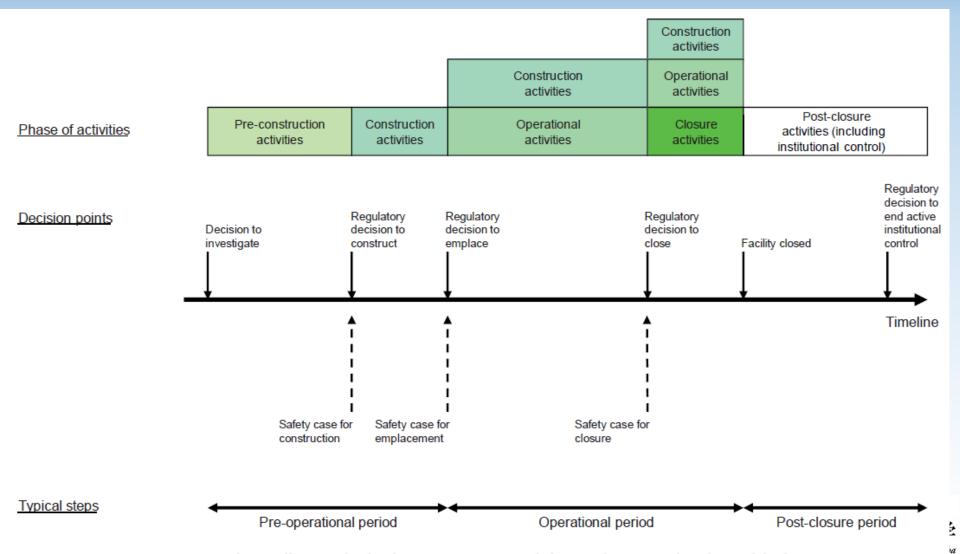
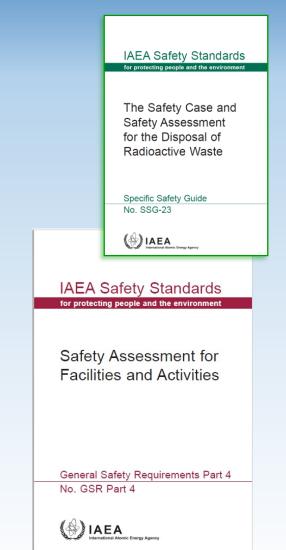


FIG. 1. Timeline to illustrate the development, operation and closure of a near surface disposal facility.

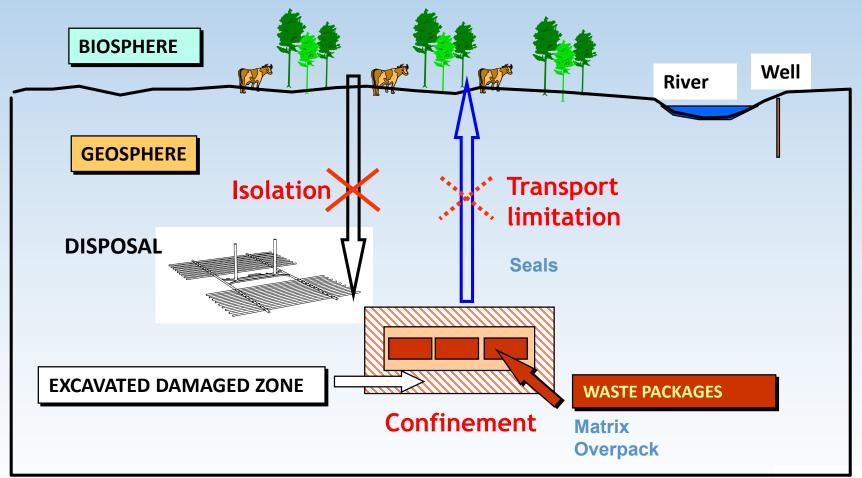
ENEP Requirements for safe disposal

- R15-19 Steps in disposal:
 - -Site characterization... to support a general understanding of the characteristics of the site and how the site will evolve over time
 - –Design... the facility shall be designed to provide operational and post-closure safety
 - -Construction... the facility shall be constructed in accordance with the design in the safety case
 - Operation... the facility shall be operated in accordance with the licence, relevant regulatory requirements and Waste Acceptance Criteria
 - -Closure... the facility shall be closed to provide the safety functions shown in the safety case to be important for safety

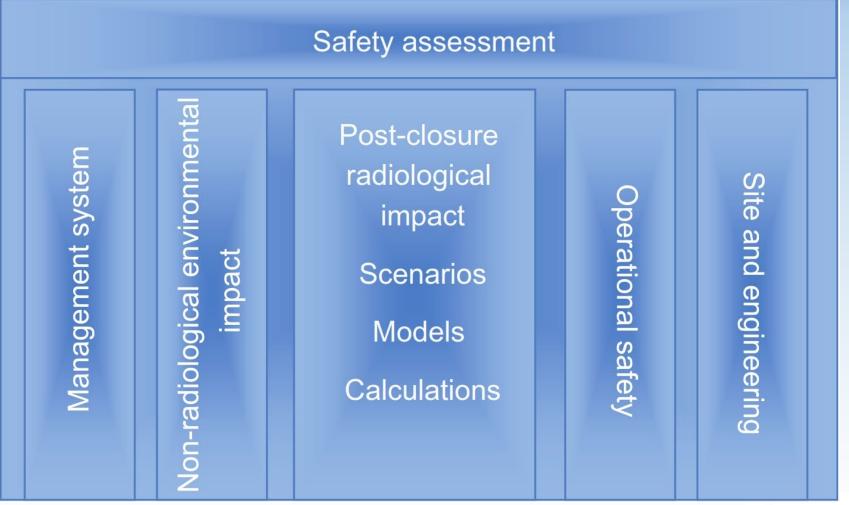

Safety assessment

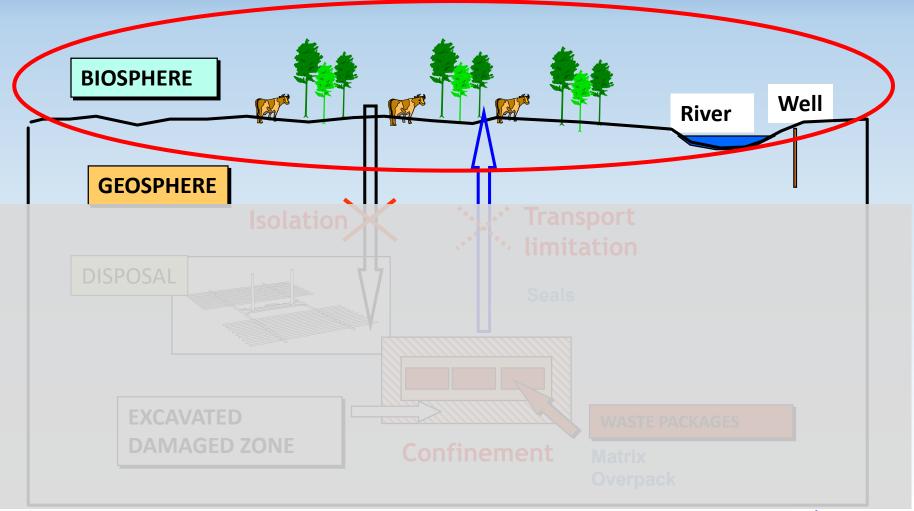
• Evaluating the overall performance of a disposal system, including

- –Host rock
- -Confinement area
- -Overlaying rock
- -Biosphere


• Systematic assessment of radiation hazards

- -Quantifying its potential radiological impact
- -both in operation and after closure.


IAEA Specific Safety Guide 14 (SSG-14) Geological Disposal Facilities for Radioactive Waste



Safety Assessment – A complex document

Biosphere in the post-closure period of a disposal facility

IAEA Safety Standards

for protecting people and the environment

The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

Specific Safety Guide

No. SSG-23

ENEP Radiation protection in the post-closure period

Safety objectives

- -The safety objective is
 - to site, design, construct, operate and close a disposal facility
 - so that protection after its closure is optimized, social and economic factors being taken into account.
- -A reasonable assurance also has to be provided
 - that doses and risks in the long term will not exceed the dose constraints or risk constraints that were used as design criteria.

Criteria

- The dose limit for members of the public for doses from all planned exposure situations is an effective dose of 1 mSv/a.
 - This criteria should **not to be exceeded in the future**.
- To comply with this dose limit, the calculated dose or risk does not exceed a dose constraint of 0.3 mSv/a or a risk constraint of the order of 10⁻⁵ per year

Criteria in national disposal facility projects

*Exposure from natural background: 2.4 mSv/y

Sweden

- Risk constraint: 10^{-6} per year (ca. 20 μ Sv /y)*
- Time frame after closure
 - First 1000: Quantitative assessments
 - -> 1000 y: Sequence of possible developments
 - Assessment as long time as barrier functions are required, but at least 10 000 y

• Finland

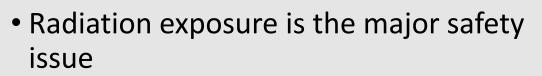
- Dose criteria
 - Dose to the most exposed people below of 0.1 mSv/y
 - Average doses to other people shall remain insignificantly low.
- Time frame after closure
 - Several 1000 y
 - Then: constraints on radioactive releases to the environment
 - Releases can be averaged over one 1000 years.

University of Tsukub

Criteria in national disposal facility projects (cont.)

France

- Risk constraint: 0.25 mSv/a
- Time frame after closure
 10000 years for safety demonstration

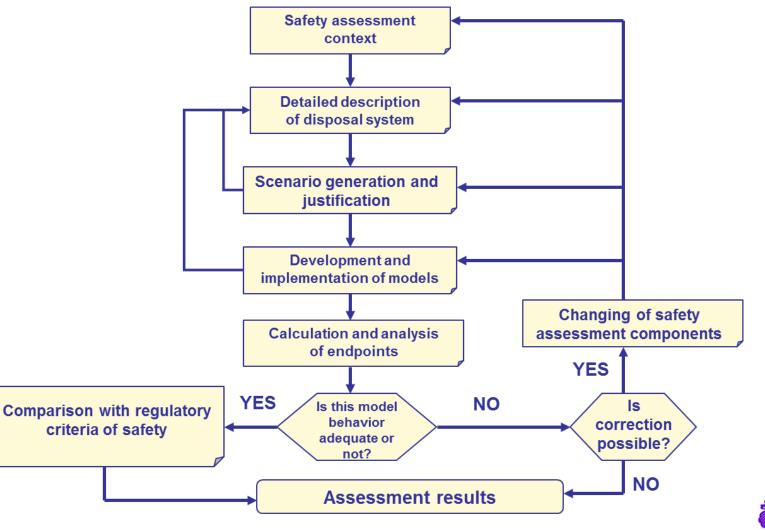

Germany

- Dose criteria for HLW disposal facility
 10 μSv per year (still under discussion)
- Time frame after closure (still under discussion)
 - -10 000 years: Detailed assessment
 - 1 million (!) years: A more stylized assessment

Safety Guide SSG-14

Appendix II: Post-Closure Safety Assessment

- Develop **confidence** in modelling
- Reasonable conservatism
- Any approach to make that **acceptance easier** will be a long term benefit
 - Acceptance can be the most difficult aspect of an assessment
- An approach which balances
 - simplicity, conservatism and realism is likely to be the best starting point for assessments.


Compliance with safety objectives and criteria

- In estimating doses to individuals in the future due to a disposal facility,
 - -.... people will be present locally,
 - …People make some use of local resources that may contain radionuclides originating from the waste in the disposal facility.
- It is **not possible to predict the behaviour** of people in the future with any certainty,
 - Its representation in assessment models is necessarily stylized.
- The rationale and possible approaches to the **modelling of the biosphere** and the estimation of doses arising from waste disposal facilities have been considered in the **IAEA BIOMASS** Project.

Assessment of potential exposures after closure of the facility

The IAEA BIOMASS Project (1998-2003)

E١

IAEA-BIOMASS-6

"Reference Biospheres" for solid radioactive waste disposal

Report of BIOMASS Theme 1 of the BIOsphere Modelling and ASSessment (BIOMASS) Programme

Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

July 2003

INTERNATIONAL ATOMIC ENERGY AGENCY

Conclusions

- IAEA has developed Safety Standards on the disposal of radioactive waste
- The **safety assessment** for a waste disposal facility has to cover all components and aspects of a facility
 - Host rock, waste packages in the confinement, geology and hydrology, exposures to people in the biosphere
- Radiological criteria in the post-closure period
 - -Well below 1 mSv/a
 - Time frame to be considered up to a million years
- IAEA developed a methodology to set up assessment models for exposures in the far future

