

Assessing potential exposures to people in the postclosure period of a waste disposal facility

I. General aspects

Gerhard Proehl

- Radioactive waste is generated world-wide during the application of nuclear techniques
 - Energy production
 - Science and industry
- Radioactive waste has to be disposed safely to ensure long-term isolation from the biosphere
- International Safety Standards require a comprehensive safety assessment of facilities for disposal of radioactive waste
 - A key element of the safety assessment is the assessment of potential exposures to people after closure of the disposal facility
 - International Safety Standard recommend **dose criteria** for the exposures of people

ENEP Problem (cont.)

- The safety assessment covers time frames of several thousand years up to a million years
 - Depending on the country and type of radioactive waste to be disposed
- Disposal facilities have a complex system of safety features
 - Releases of radionuclides from waste repositories to the biosphere in the postclosure period may occur – if at all – only in the very far future
- Compliance with the radiological criteria has to be demonstrated today
 - Assessments of potential exposures of people possibly living close to the disposal site have to be carried out
 - The consideration of long-time frames requires the consideration of changes in the environment

Relevant radionuclides for disposal of radioactive waste

Waste category	Radionuclide	Half-life (y)	Remark
Low-level waste	Cs-137 Sr-90	30.1 28.5	
Intermediate and high level waste	Cl-36 Ni-59 Se-79 Zr-93 Nb-94 Tc-99	75 000 65 000 1 530 000 20 300	Potential high environmental mobility Potential high environmental mobility Potential high environmental mobility
	Pd-107 Sn-126 I-129 Cs-135	6 500 000 100 000	Potential high environmental mobility
	U-238 - Th-230 - Ra-226 Am-243 - Pu-239 - Pa-231 Np-237	1 600 7 380 24 100 32 700	Daughter nuclide of U-238 Daughter nuclide of U-238 Daughter nuclide of Am-243 Daughter nuclide of Am-243 Potential high environmental mobility

Time frames in safety assessments for disposal facilities

- Disposal of low-level waste
 - E.g. waste generated during the decontamination activities after nuclear accidents
 - Disposal in near-surface facilities
 - Required isolation time: **some 100 years**

• Disposal of intermediate level waste

- Waste generated in nuclear facilities
- Disposal in geological disposal at intermediate depth (around 100 m).
- Required isolation time: Some 1000 years

• Disposal of high-level waste

- Spent fuel from nuclear power plants
- Waste from reprocessing of fuel elements
- Disposal in deep geological formations at depths at around 500 m.
- Required isolation time: 10000 years or more (up to 1 million y), depending on the national regulations

Biosphere in the post-closure period of a disposal FREP

From the disposal area to the near-surface aquifer

- Radionuclides are released from the disposal
- Radionuclides migrate through the overlying rock
- Radionuclide contaminate the near-surface aquifer

From the near-surface aquifer to the biosphere

- Withdrawal of water via a well
- In case of high ground-water level, radionuclides may directly contaminate soils

Radionuclides enter the biosphere

Pathways for withdrawal of water from a well

ENEP

Pathways for rising ground water

ENEP

Plant model irrigation

Plant model for rising groundwater

From present to future conditions

Processes causing radionuclide transfer in the environment

Important processes and features

- Irrigation
 - Water demand of crops in different climates
- Processes involved in the behaviour of radionuclides in plants
 - Interception of radionuclides in irrigation water by crops
 - Weathering and loss from plants
 - Systemic transport of radionuclides in plants
 - Uptake of radionuclides by crops via the rots from soil
 - Migration in soil
- Processes involved in the transfer of radionuclides to animal products
 - Feed and water intake
 - Metabolism in the animal
 - Transfer to meat milk and eggs
- Processing and culinary preparation
- Intake of food
 - Demand for nutrients
 - Plant and animal food products

ENEP Contamination routes for plant products

A Short-term

- 1 Direct deposition onto edible parts of plants
- 2 Deposition onto leaves -> transport to the edible parts

B Long-term

- 3 Deposition on soil and uptake through the roots
- 4 Resuspension of dust and redeposition on leaves and fruits

Interception of radionuclides dissolved in irrigation water

Fraction of activity retained by crops (interception) ...

- ... decreases with amount of irrigation water
- -... increases with the development of crops
- -... highest during the peak season

Interception depends on the chemical form (Hoffman et al., 1995)

(mass interception fraction = interception fraction normalized to the biomass)

Translocation

Active transport of elements in plants

 Defines the amount of activity transported from leaves to edible parts

Depends on

- Element
 - Mobile elements (xylem + phloem)
 - Immobile elements (only phloem)
- Stage of development
- Pronounced seasonality
- Foliar uptake may exceed root uptake by orders of magnitude

ENEP Translocation factors for wheat and barley

Left: Total activity in grain [Bq/m²] per Total activity deposited on the plant [Bq/m²] Right: Activity concentration in grain [Bq/kg] per Total activity deposited on the plant [Bq/m²]

Loss of radionuclides from plants due to weathering

- Post-deposition activity loss from plants
 - -Rainfall, fog, foliar abrasion
 - Including the decrease of activity concentration due to increase in biomass (growth dilution)

• Influencing factors

- Time after deposition
 - Loss rate declines with time after deposition
- Age of plants
 - Higher for young plants
- Rainfall, fog

Cs-137 and I-131 activity in vegetables after single deposition event

Radionuclide uptake from soil

Long-term source of plant contamination, depending on

Soil characteristics

- Sorption capacity (Sand, loam and clay content, Organic matter)
- -pH value
- -Redox potential (esp. iodine, plutonium)
- Concentration of antagonists
 - Cs vs K, Sr vs Ca
 - Use of fertilizer

Chemical form of the deposit

-Soluble vs inert particles

Time since the contamination

Progressing sorption, fixation and incorporation processes

Quantification of the uptake of radionuclides from soil

Transfer factor soil-plant TF

TF= Activity_(plant) / Activity_(soil) [Bq/kg fresh per Bq/kg dry]

Typical values for transfer factors soil-plant

- Strontium:
 - -0.1 1
- Caesium
 - -Well managed soils: 0.001-0.1
 - -Organic, acid soils: 0.1-10
- Technetium:
 - -0.1 10
- lodine:
 - 0.001 1
- Plutonium, americium :
 - -0.00001 0.001
- Pronounced variability, also on the same site

•••••

Resuspension of soil

- Defines the flux of radionuclides from soil to atmosphere
- Depends on
 - Soil texture and humidity
 - Vegetation cover
 - Wind speed
- Areas particularly affected by resuspension
 - Arid regions
 - In temperate climates, resuspension during storms may cause a relevant activity loss from soil

Erosion:

Degradation of soil due to removal of soil material by wind and water

Erosion by water

- Kinetic energy of rain destroys soil aggregates
- Soil will be transported downhill

• Factors increasing water erosion

- Precipitation and contribution of heavy rain showers
- Slope
- High fraction of sand and silt
- Low content of clay and organic matter
- Poor vegetation
- Relevance
 - Up to 200 t/(ha*a) (=> 1 cm soil)

Erosion by water

- Rain splash affects the soil surface
- Creeks in a sloping field

•••••

Transfer to animal products

- Use of contaminated feedstuffs
- Transfer to meat, milk, eggs

Simple model for the time-dependence of the activity in animal products

For more information:

Compilation of parameters for environmental transfer TECHNICAL REPORTS SERIES NO. 472

Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments

- Licensing of facilities for disposal of radioactive waste requires a safety assessment
 - The assessment of radiation doses to people in the post-closure period is a key element of the safety assessment
- Long time frames have to be considered
 - Several 100 years for low level waste
 - Several 1000 years for intermediate level waste
 - 10000 and more for high level waste
- Radionuclides enter the biosphere
 - Abstraction of water from a well
 - Rising groundwater in case of high water tables
- Safety assessment has to include all relevant pathways
 - Intake of food and drinking water
 - Inhalation of resuspended soil
 - External exposure
- Safety assessment has to consider all processes leading to an exposure of people
 - Irrigation
 - Uptake of radionuclides from soil
 - Radionuclide sorption and migration in soil
 - Transfer to animal products
 - Erosion and resuspension

