事故に由来する廃棄物の管理と 放射性核種の汚染ふるまい

原子力災害環境影響評価論I 2020年7月8日

日本原子力研究開発機構 駒 義和

1

内容

- 1. 廃炉と放射性廃棄物
 - 廃炉の状況
 - 放射性廃棄物の発生
- 2. 放射性廃棄物の管理
 - 廃棄物管理の方法
 - 通常の廃止措置における放射性廃棄物の発生
- 3. 放射性核種濃度の分析
 - 試料、核種、方法
 - 瓦礫類、汚染水、土壌、植物のデータ
- 4. 放射性核種の汚染ふるまい
 - 検討の方法
 - 土壌、瓦礫類、汚染水に係る汚染ふるまい
 汚染のモデル

1. 廃炉と放射性廃棄物

廃炉と放射性廃棄物

福島第一原子力発電所における事故の発生

- 2011年3月11日に東北地方太平洋沖地震が発生し、東京電力(株)福島第一 原子力発電所に津波が到来し、原子炉が決定的な被害を受けた。
- 1号機は 12日 15:36、3 号機は 14 日 11:01、4 号機は 15 日 6 時頃にそれぞれ 水素爆発を起こした。2 号機は爆発を免れたが、ブローアウトパネルが脱落した。いずれの原子炉からも放射性物質が漏洩、環境に拡散した。
- 5 及び6 号機は停止に成功した。
- 事故後、放射線量の低減、放射性核種の閉じ込めに関する対策として、汚染水の処理、使用済み燃料の取り出しが行われている。

2011年3月15日の1から4号機

1から4号機の状況

*1 https://www.tepco.co.jp/decommission/progress/about/index-j.html *2 https://www.tepco.co.jp/decommission/progress/safety/ 原子炉内部の損傷した燃料の状態

2号機での試験的取り出しに向け、研究開発とその成果を現場適用するためのエンジニアリングを進め、燃料デブリ取出設備(アクセス装置、回収装置等)の製作・設置を進める。原子炉格納容器(PCV)内部調査を取り出しと合わせて実施する。*1

炉心・格納容器内の燃料デブリ分布の推定*2

*1東京電力ホールディングス株式会社, "廃炉中長期実行プラン2020, "2020年3月27日. *2 https://www.tepco.co.jp/decommission/progress/retrieval/index-j.html

廃炉のロードマップ

ē炉工程全	体の枠組みは維持	堅持			堅持 冷温停止
)11年12月	2013年11月 現在	2021年:	12月 2031年末		30~40
				o #0	
第1期	第2 期		第3-①期 第	3 期	
使用済燃料取り出 始までの期間(23	出し開 構 構 構 構 構 始 されるまでの 期間(10年以内)	廃	止措置終了までの其	閉筒(30~40年後	<u></u> 2)
主な目標工和	'呈		現行	改訂	
汚染水対策	汚染水発生量を150m3/日程度に抑制	更なる	2020年内	2020年内	
	汚染水発生量を100m3/日以下に抑制	発生量の 低減		2025年内	新設
滞留水処理	建屋内滞留水処理完了※		2020年内	2020年内(※)	
	原子炉建屋滞留水を2020年末の半分程度に	こ低減	-	<u>2022年度~</u> <u>2024年度</u>	新設
燃料取り出し	1~6号機燃料取り出しの完了			2031年内	新設
	1号機大型カバーの設置完了			2023年度頃	新設
	1号機燃料取り出しの開始 安全確保・飛	散防止	2023年度目処	<u>2027年度~</u> <u>2028年度</u>	見直し
	2号機燃料取り出しの開始 _ 対策のため工	法変更	2023年度目処	<u>2024年度~</u> <u>2026年度</u>	見直し
燃料デブリ	初号機の燃料デブリ取り出しの開始		2021年内	2021年内	
取り出し	(2号機から着手。段階的に取り出し規模を拡大)				
廃棄物対策	処理・処分の方策とその安全性に関する技術的な	見通し	2021年度頃	2021年度頃	
	ガレキ等の屋外一時保管解消		-	2028年度内	新設

汚染物・廃棄物の発生

- 東京電力(株)福島第一原子力発電所では、事故とその後の 対応に伴い、多種・多量の汚染物・廃棄物が発生した。
- 廃止措置等に向けた取り組みが進むとともに、汚染物・廃棄 物は継続して発生し、保管されている。

瓦礫類等の管理状況(4月30日)*1

廃棄物	分類	保管量
瓦礫類	固体廃棄物貯蔵庫	22,200 m ³
	覆土式一時保管施設、仮設保管設備、容	17,900 m ³
	器 (1–30 mSv/h)	
	シート養生 (0.1–1 mSv/h)	42,700 m ³
	屋外集積 (<0.1mSv/h)	211,000 m ³
伐採木	屋外集積(幹・根・枝・葉)	97,000 m ³
	一時保管槽(枝・葉)	37,300 m ³
保護衣	屋外集積(容器)	44,100 m ³

水処理二次廃棄物の管理状況(5月7日)*1

種類	保管量
セシウム吸着装置使用済ベッセル	779
第ニセシウム吸着装置使用済ベッセル	230
多核種除去設備等保管容器	3,445
高性能多核種除去設備使用済ベッセル	74
多核種除去設備処理カラム	17
モバイル式処理装置等使用済ベッセル及びフィルタ類	212
廃スラッジ	417 m ³

8

*1 東京電力ホールディングス株式会社, 瓦礫類・伐採木・使用済保護衣等の管理状況, 廃炉・汚染水対策チーム会合/事務局会議(第78回), 2020年5月28日.

瓦礫類と伐採木の発生と保管

- 瓦礫類
 - 大規模な工事が継続して行われており、増大している。線量率により 分類、保管されている。
 - 低線量率の物が占める割合が大きい。また、屋外集積(≤0.1 mSv/h)、
 固体廃棄物貯蔵庫 (>30 mSv/h)の保管量が増大している。
- 伐採木
 - 設備や施設の設置に伴い、樹木が伐採されている。
 - 減容のため枝葉はチップ化され、また、防火を考慮した保管がなされている。

*1 東京電力ホールディングス株式会社, 瓦礫類・伐採木・使用済保護衣等の管理状況, 廃炉・汚染水対策チーム会合/事務局会議(第78回), 2020年5月28日.

9

廃炉と放射性廃棄物

使用済保護衣と水処理二次廃棄物の発生と保管

- 使用済保護衣
 - 作業者が使用した保護衣は従来保管されていたが、2016年3月より
 焼却処理が始められた。
 - 処理を継続し、徐々に低減する見込みである。
- 水処理二次廃棄物

 帯留水から放射性核種を除去する処理に伴い、二次廃棄物が発生 する。セシウム吸着のベッセル(ゼオライト等を内蔵する)、多核種除 去設備のスラリー・吸着材(高性能容器 HIC; High integrity container) の寄与が大きい。

保管量の推移*1

汚染物・廃棄物の保管管理方法

- 汚染物・廃棄物を一時的に保管する場所を解消するため、その性状に合わせた減容、焼却、安定化等が施されるとともに、保管設備等が整備される。
- 減容に関し、使用済保護衣、伐採木、その他可燃物等の増設雑固体廃 棄物焼却設備、金属・コンクリートの減容処理設備が計画されている。
- 保管に関し、固体廃棄物貯蔵庫(第9棟、増設)、大型保管庫が計画されている。

保管管理の計画*1

*1 東京電力ホールディングス株式会社,東京電力ホールディングス(株)福島第一原子力発電所の固体廃棄物の保管管理計画, 2019年6月27日.

廃棄物の発生と保管の見通し

固体廃棄物の保管管理計画の全体イメージ*1

*1 東京電力ホールディングス株式会社,東京電力ホールディングス(株)福島第一原子力発電所の固体廃棄物の保管管理計画, 2019年6月27日.

放射性廃棄物の保管場所

「瓦礫等」及び「水処理二次廃棄物」の保管の将来像*1

13

廃炉に係る経済的負担

				(単位:億円)	
		2020年3月期	2019年3月期	比較	※1 特別利益の概要 ◆原語・廃炉等支援機構資金交付金
€1	特別利益	4,149	1,598	2,551	2020年3月30日に資金援助額変更認定申請 ◆持分変動利益
	原賠·廃炉等支援機構 資 金 交 付 金	1,016	1,598	△5 81	JERAへの事業分割承継によるもの ◆災害損失引当金戻入額
	持分変動利益	1,997	_	1,997	過去に計上した災害損失引当金のっち、福島第二 原子力発電所に係る額を廃炉決定により取崩したもの
	災害損失引当金戻入額	1,135	_	1,135	※2 特別損失の概要 <u>◆財産偶発損</u>
{2	特別損失	6,093	1,780	4,313	台風15、19、21号による滅失資産の薄価相当額を計上したう ◆災害特別損失(※3)
	財產偶発損	3	_	3	東北地方太平洋沖地震により被災した資産の復旧等に要す 費用の見積り増や、台風15、19、21号により被災した資産の 復旧等に要する費用を計上したもの
	災害特別損失	3,949	269	3,679	◆ <u>原子力損害賠償費</u> 出荷制限指示等による損害や風評被害等の見積り増など
	原子力損害賠償費	1,079	1,510	△431	◆福島第二廃止損失 廃炉決定により、設備や核燃料等を損失処理したもの
	福島第二廃止損失	956	_	956	◆減損損失(※3) 将来の投資回収が見込めない固定資産について損失を
				4.0-	計上したもの

*東京電力ホールディングス株式会社, "2020年3月期 決算説明資料."

2. 放射性廃棄物の管理

放射性廃棄物の段階的な管理

- 廃棄物管理 (waste management) は、前処理 (pretreatment)、処 理 (treatment, conditioning)、処分 (disposal) などを段階的に行う。
- 原子力事故に伴う廃棄物は、種類や性状が通常の場合と異なる ために、多くの場合、研究開発の必要がある。

*1 Principles of Radioactive Waste Management Safety Fundamentals, International Atomic Energy Agency, Safety Series No. 111-F (1995). *2 IAEA Safety Glossary 2007 Edition.

放射性廃棄物の分類

- 放射性廃棄物の分類において、放射能量 activity content(濃度 activity concentration、比放射能 specific activity、全放射能 total activity)は重要な尺度である。
- 一般に、放射能量の多い順に、高 high、中 intermediate、低 low、極低 very low レベル廃棄物と分類される。
- ・
 か射性核種の半減期により
 ・
 分類の基準は変化する。
 - 長い半減期の核種は潜
 在的な危険性が大きいと
 みなされる。

Half-life

放射性廃棄物を分類する概念*1

我が国における放射性廃棄物の区分と処分方法

廃棄物の処分方法は、安全を確保するための技術と法制面の整備があいまって実施される。

我が国における放射性廃棄物の区分と処分方法*1

*1 放射性廃棄物の種類に応じた処分方法,資源エネルギー庁.

廃棄物の処分における安全の確保

- 廃棄物の処分に係る安全 は、一般公衆の被ばくを所 定の値以下にし、かつ合理 的に可能な限り低く保つこと により確保する^{*1}。
- 処分場は、人エバリアと天 然バリアにより構成される ので、そのシステムからの 影響を評価する。

廃棄物処分後の被ばく評価モデルの例*2

*1 放射性廃棄物の工学,長崎晋也,中山真一(共編),オーム社 (2011)

*2 Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities, IAEA, IAEA-TECDOC-1380, Fig. 22 (2003).

廃棄物管理

処分における廃棄物の濃度限度を評価した例

- 処分場の設計や核種により、核種の濃度限度は異なる。
- 核種の半減期や放出する放射線の種類とエネルギー、化学的性質が影響する。
 - 長半減期のα放射体は濃度限度が小さくなる。アクチニドである Th、U、Np、Puの 同位体には α核種が多いが、濃度限度はいずれも低い。UとTh の同位体は天然 にも存在する。
 - 核分裂生成物では、Zr-93、Nb-94、Tc-99、I-129の濃度が、放射化生成物では C-14 がそれぞれ低い。

*1 Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities, IAEA, IAEA-TECDOC-1380, Fig. 5, Fig. 7, Tbl. XVIII (2003).

処分の際に確認しておくべき事項

- 放射性廃棄物を処分する前に含有する放射能量などをあらかじめ確認する。
- 測定が難しい核種の量を決定するため、想定し やすい核種との相関をあらかじめ求め、これを 用いる。
 - 濃度の頻度はしばしば対数正規分布をとる。

原子炉廃棄物を対象とした 放射濃度決定方法の例^{*2} (スケーリングファクタ法における ⁶⁰Coと⁶³Niの相関)

*1 原子力安全基盤機構 規格基準部, "均質・均一固化体及び充填固化体の廃棄のための確認方法について(一部改正)," JNES-SS-0801 (2008).

*2 International Atomic Energy Agency, NW-T-1.18 (2009).

廃棄体の確認方法*1

	確認項目	確認方法
1	著しい破損がないこと	目視確認
2	放射性廃棄物を示す標識、整理番号の表示	//
3	最大放射能濃度を超えないこと	記録確認(測定記録等)
4	一軸圧縮強度が1470 kPa以上	"(測定記録)
5	有害な空げきが残っていないこと	"(測定記録)
6	表面密度限度	"(測定記録)
7	固型化材料	〃(証明書等)
8	容器	〃(証明書等)
9	埋設時耐埋設荷重	〃(証明書等)
10	配合比	"(運転記録等)
11	練り混ぜ・混合	"(運転記録等又は測定記録)
12	硬さ値	"(運転記録等又は測定記録)
13	健全性を損なうおそれのある物質が含まれていないこと	〃(製作方法)
14	固型化後の期間が6ヶ月以上経過	"(運転記録)
15	表面線量当量率が10 mSv/hを超えないこと	"(測定記録)

果彻官埋

廃棄物管理

原子炉の廃止措置に伴う廃棄物

- 原子炉施設の廃止措置の方法はおおよそ定型化されている。放射性廃棄物は全体の 4-5% 程度である。
- 福島第一原子力発電所では、原子炉建屋、タービン建屋のみならず広範囲
 に汚染しており、汚染状況の把握と推定が基礎情報として必要である。

燃料の搬出、汚染の除去、周辺 設備の解体などを行う

放射性物質の量が多い原子炉などの 解体を行う

有意な汚染を取り除いた後、建屋などの 解体を行う

廃止措置の主な手順*1

廃止措置対象施設の推定発生量^{*2}

放射能レベル区分	発生量 (t)	割合
放射性廃棄物 (L1)	約 100	0.02%
放射性廃棄物 (L2)	約 1,000	0.2%
放射性廃棄物 (L3)	約 18,900	4%
放射性物質として扱う必要のないもの (CL)	約 77,700	17%
放射性廃棄物でないもの (NR)	約 353,700	78%
合計	約 451,200	100%

*1 原子力発電所の廃止措置, 電気事業連合会, パンフレット (2016).

*2 浜岡原子力発電所1,2号機 廃止措置計画全体概要, 中部電力株式会社.

終了確認

3. 放射性核種濃度の分析

分析の概要

- 事故廃棄物の管理方法は確立されておらず、研究開発が必要である。廃棄物の性状、殊に放射能量のデータは基礎情報として不可欠であり、分析により求めている。
 - 2021 年度頃に「処理・処分の方策とその安全に関する技術的 な見通し」を取りまとめる予定としている*1。
- 汚染水、水処理二次廃棄物、瓦礫、植物、土壌の試料を採取、分析を行っている。
 - 廃棄物の処分安全において重要な核種を選定し、分析の対象 とした。
 - 東京電力から提供された試料や機構等が採取した試料を茨城 県の施設へ輸送して分析している。

分析の対象としている核種

γ線核種	⁶⁰ Co, ⁹⁴ Nb, ¹³⁷ Cs, ¹⁵² Eu, ¹⁵⁴ Eu
β線核種	³ H, ¹⁴ C, ³⁶ Cl, ⁴¹ Ca, ⁵⁹ Ni, ⁶³ Ni, ⁷⁹ Se, ⁹⁰ Sr, ⁹⁹ Tc, ¹²⁹ I
α線核種	^{233, 234, 235, 236, 238} U, ²³⁷ Np, ^{238,239,240,242} Pu, ^{241, 243} Am, ²⁴⁴ Cm, 全α

*1 東京電力ホールディングス(株)福島第一原子力発電所の廃止措置等に向けた中長期ロードマップ,平成29年9月26日.

分析した試料 - 2017年3月31日時点-

分類		試料		試料点数
瓦礫類	原子炉建屋内	1号機 1・5階	瓦礫等	29
		2号機 1・5階	瓦礫等	7
		3号機 1階	瓦礫等	11
		4号機使用済燃料プール	瓦礫	2
	タービン建屋内	1号機	スラッジ・砂	7
	原子炉建屋周辺	1•3•4号機周辺	瓦礫	15
	覆土式一時保管施設	第1·2槽	瓦礫	10
汚染水	原子炉建屋内	2•3号機格納容器内	滞留水	4
	タービン建屋内	1号機	スラッジ・滞留水	6
	集中廃棄物処理建屋内	地下	滞留水	12
	処理装置	セシウム吸着装置(第二含む)	処理水	27
		除染装置	処理水	3
		淡水化装置 (RO)	処理水	2
		蒸発濃縮装置	処理水	3
		多核種除去設備(増設含む)	処理水	18
汚染水処理二次廃棄物	多核種除去設備(増設含る	<u> </u>	スラリー	6
可燃物	保護衣等焼却灰			5
土壌	土壌			6
植物	伐採木	枝葉		5
	立木	枝葉、落葉、表土		123

分析方法

• 原子力機構の廃棄物(研究施設等廃棄物)を対象として分析指針^{*1}を作成しており、これを基盤にして分析している。

*1 研究施設等廃棄物に含まれる放射性核種の簡易・迅速分析法(分析指針), 亀尾ら, JAEA-Technology 2009-051 (2009).

放射能分析

原子炉・タービン建屋の分析状況 (実績)*

今後も継続して瓦礫等の分析を進める予定である。

特に、格納容器内の固体試料については、内部の調査に合わせて採取できた場合に、入手、分析する予定である。原子炉建屋内の試料については、高線量環境下における採取方法を検討している。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告), 廃炉・汚染水対策チーム会合/事務局会議, 第42回, 平成29年5月25日.

27

放射能分析

原子炉・タービン建屋の汚染の傾向*

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告),廃炉・汚染水対策チーム会合/事務局会議,第42回,平成29年5月25日.

28

放射能分析

原子炉建屋内の瓦礫試料の分析データ*

図 原子炉建屋内で採取された瓦礫試料に検出された核種の濃度(137Csに対するプロット)*1

核種の濃度は、137Csとの関係(相関)を見るために137Cs濃度に対してプロットし、直線を加えた。(以後の参考資料においても同様。)

1号機及び2号機の1階と5階、3号機1階で、¹³⁷Csのほか、³H、⁹⁰Sr、¹²⁹I等の核分裂生成物、²³⁸Pu等のα核種、¹⁴C、⁶⁰Co等の放射化生成物を検出した。

*1 廃炉・汚染水対策チーム会合/事務局会議(第29回)資料から引用。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告),廃炉・汚染水対策チーム会合/事務局会議,第42回,平成29年5月25日.

放射能分析

原子炉建屋周辺瓦礫試料の分析データ*

図 建屋周辺の瓦礫試料に検出された核種の濃度(137Csに対するプロット)*1

1及び3号機周辺の瓦礫は、汚染の核種組成が原子炉建屋内と似た傾向にある。4号機周辺の瓦礫は、90Sr が似た傾向にある。

*1 廃炉・汚染水対策チーム会合/事務局会議(第16回)資料から引用。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告),廃炉・汚染水対策チーム会合/事務局会議,第42回,平成29年5月25日.

放射能分析

滞留水・処理水・水処理二次廃棄物の分析状況(実績)*

今後も継続して汚染水と二次廃棄物の分析を進める予定である。
 特に除染装置スラッジについては、採取方法を検討している。

* 福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告), 廃炉・汚染水対策チーム会合/事務局会議, 第42回, 平成29年5月25日.

放射能分析

滞留水・処理水・水処理二次廃棄物の汚染の傾向*

■ 汚染の特徴を分析結果に基づいて推定した。今後、試料採取・分析を通じて検証を進めていくことが必要。

滞留水

- 集中廃棄物処理建屋滞留水では、¹³⁷Csと⁹⁰Sr 濃度が高く同程度であり、³H がこれらに次ぐ傾向にある。他のβ、α核種濃度はより低い。 CsとSr 核種の濃度は時間とともに減少しているものの、減少の割合が小さくなっている。
- タービン建屋滞留水は、汚染の度合いが号機により異なる傾向にある。
- 2及び3号機の格納容器内滞留水では、下流(タービン建屋、集中廃棄物処理建屋)の滞留水に比べ、α核種の¹³⁷Csに対する放射能濃度 比が高い傾向にある。

*1 図の出典:東京電力,福島第一原子力発電所水処理設備について,2015年1月15日.4/13の原子炉注水量は3機合計で212 m³/日.

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告),廃炉・汚染水対策チーム会合/事務局会議,第42回,平成29年5月25日.

汚染水試料の分析データ(1)*

集中廃棄物処理建屋滞留水では、¹³⁷Cs と⁹⁰Sr 濃度が高く同程度であり、³H がこれらに次ぐ傾向に ある。他のβ(¹²⁹I)、α核種(²³⁸Pu)の濃度はより低い。Cs と Sr 核種の濃度は時間とともに減少してい るものの、減少の割合が小さくなっている。

*1 廃炉・汚染水対策チーム会合/事務局会議(第28,40回)資料から引用して作成。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告), 廃炉・汚染水対策チーム会合/事務局会議, 第42回, 平成29年5月25日.

放射能分析

濃度変化を表現するモデルと物質収支の試算

- ソースターム(燃料デブリ)から滞留水への放射性核種の物質移動に関して、燃料損傷時の移行と、その後の継続した移行を考慮したモデルが濃度変化を再現する。
- 燃料損傷時に滞留水へ移行した核種は、すでに除染・回収され、二次廃 棄物として管理されている。
- 現在検出される核種は、ソースタームから一定した割合で溶出する成分 とみられる。
- フィッティングにより求めたパラメータから、核種の物質収支が求められる。

* 柴田 他, "(1) 滞留水中の物質移動のモデル化," 日本原子力学会「2014年春の年会」, H21.

汚染水試料の分析データ(2)*

- タービン建屋滞留水は、汚染の度合いが号機により異なる傾向にある。15年9月以降では、1、2、3 号機と比較し、3号機で¹³⁷Cs 濃度が高い。また、上流の格納容器滞留水と濃度が異なる傾向がみ られる。(図1)
- 2及び3号機の格納容器内滞留水では、下流(タービン建屋、集中廃棄物処理建屋)の滞留水に比べ、α核種(²³⁸Pu)の1³⁷Csに対する放射能濃度比が高い傾向にある。(図2)

*1 廃炉・汚染水対策チーム会合/事務局会議(第39回)資料から引用して作成。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告), 廃炉・汚染水対策チーム会合/事務局会議, 第42回, 平成29年5月25日.

土壌と植物の分析状況(実績)*

今後土壌については、採取済みの試料を順次分析し、植物については、焼却処理後の焼却 灰を分析する予定である。

エリア	土壤*	植物(立木)			
		枝葉	落葉	表土	
А	0	3	2	3	
В	_		_		
С	-	3(草)		3	
D	1	3	3	6	
Е	_	1	1	1	
F	1	5	3	6	
G	0	1	1	1	
Н	0	3	1	3	
Ι	1	3	2	6	
J	0	1	1	1	
K	1	1	1	1	
L	1	1	1	4	
М	_	1	1	1	
Ν	0	3	3	6	
0	0	3	3	6	
Р	1	2	2	2	
Q	0	1	1	1	
R	0	1	1	1	
S	0	1	1	3	
Т	0	1	1	1	

表土壌と植物の分析試料数

*1 エリア B、C、E、M はフェーシングなどの工事に伴い採取対象がない。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告),廃炉・汚染水対策チーム会合/事務局会議,第42回,平成29年5月25日.

土壌・植物の汚染の傾向*

■ 汚染の特徴を分析結果に基づいて推定した。今後、試料採取・分析を通じて検証を進めていく。

構内土壌(地表から0-5 cmの表土)^{*1}

- ¹³⁷Csが主な核種であり、⁹⁰Sr、²³⁵U、²³⁸Uが全ての 試料で検出された。(図1)
- Uはその同位体組成から天然由来の影響が大きく、
 事故による影響は確認されていない。(図1)
- ²³⁸Pu濃度はほとんどが検出下限値未満あるいは 10⁻³ Bq/g 程度のごく低い濃度であった(環境の フォールアウト相当)。

図1 土壌の放射性核種濃度^{*1} 立木(枝葉、落葉、表土·腐葉土)*2

- ¹³⁷Cs、⁹⁰Srの他に、原子炉建屋の近傍では³H、¹⁴C、
 ⁷⁹Se が検出された(図2)。
- Dエリアの落葉と Eエリアの表土から Pu 核種が検 出された(10⁻³ Bq/g 程度であり環境のフォールア ウト相当)。
- Cs 核種濃度は、枝葉に比べて落葉や表土(腐葉 土を含む場合がある)で高い傾向にある。

図2構内における立木(枝葉)中の放射能濃度分布*2

*1 廃炉・汚染水対策チーム会合/事務局会議(第40回)資料から引用。

*2 廃炉・汚染水対策チーム会合/事務局会議(第16回)資料から引用。

*福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告),廃炉・汚染水対策チーム会合/事務局会議,第42回,平成29年5月25日.

分析データ集 "FRAnDLi"

4. 放射性核種の汚染ふるまい

核種の移行ふるまいの検討とその指標

- 分析において、定量の困難(核種の濃度が低いため)、あるいは、 試料採取の困難(現場の線量率が高いため)により、核種の移行 ふるまいを推定する方法が必要である。
- 濃度比を規格化した値(輸送比)を用いる方法により、元素の化学 的なふるまいを相対的に表す。
 - 元素Xがソースターム(核燃料; fuel)から汚染物(試料; sample) へと移行した割合を、基準とする核種に対する比として求める。

$$T_{\rm X} = \frac{N_{\rm X,sample}/N_{\rm X,fuel}}{N_{\rm std,sample}/N_{\rm std,fuel}} = \frac{c_{\rm X,sample}/A_{\rm X,fuel}}{c_{\rm std,sample}/A_{\rm std,fuel}}$$

- ∧ N は原子数、c は濃度 (Bq/kg, Bq/cm² ...)、A は放射能^{*1}
 (Bq)、X は対象とする核種、std は基準とする核種 (¹³⁷Cs) である。A は半減期補正して適用する。
- 廃棄物の放射能濃度を決定する方法の一つである、スケーリ ングファクタ法は Key 核種濃度との相関に基づく。

東京電力による汚染土壌の分析

 2011年3月に東京電力は構内の3か所を定め、継続的に試料を 採取、分析し、γ線放出核種、Sr、U、TRU 核種の濃度が報告されて いる。

- ²³⁸Puと²³⁹⁺²⁴⁰Puの濃度比から、Puは事故由来と考えられた。

- 採取の場所により濃度が異なり、定点2(野鳥の森)で低い。
- 濃度はばらつきが大きいが、比を取るとばらつきは軽減される。

土壌サンプリングの位置

* 方角と距離は1-2号機スタックからのもの.

*1 東京電力株式会社, "福島第一原子力発電所構内における土壌中の放射性物質の検出状況について," プレスリリース, 平成23年3月28日, http://www.tepco.co.jp/cc/press/11032806-j.html (2011). 並びにこの続報.

土壌への輸送比の時間依存性

- 輸送比は、それぞれの核種について、時間に対しておおむねー定である。
 ⁹⁹Mo/^{99m}Tc や ¹⁴⁰Ba/¹⁴⁰La の壊変系列では、娘核種は親核種の移行した結果を表す。
 - 事故の初期段階の寄与が支配的であることと整合する。
 - ばらついている値は、分析値の誤りを示唆する。
- AmとCmも同様の輸送比であり、TRUのふるまいは同様であったと言える。

定点1で採取した試料に検出された核種の輸送比の時間依存性

種々の元素の土壌への輸送比

- 検出された核種の輸送比(燃料から土壌への移行割合) は次の順序であった。
 I > Te > Cs > Ag > Mo~Ru > Ba > Sr > Nb > Pu~Am~Cm
- アクチニド (TRU) とアルカリ土 類 (Sr, Ba)の値は相互に近く、 拡散過程への化学的な性質 の寄与が示唆される。
- 場所(方角)による値のばら つきが見られる。
 - SrとIの定点間のばらつ きは1桁程度であり、定点 2で相対的に値が大きい。

サイト内と周辺土壌への輸送比の比較

- 不揮発性の核種について、汚染の核種組成に対する距離の依存性、また、方角についてプルームの軌跡との相関が興味深い。
- サイトの周辺の土壌を分析し、Sr やアクチニド核種の輸送比を求めた。
- サイトの周辺であっても、Sr 等核種の輸送比は同様であり、距離の依存 性は小さい。また、方向により輸送比が異なる傾向があり、プルームの 軌跡との関係を詳しく調べることが望まれる。

試料の採取場所

検出された核種の輸送比

汚染ふるまい

広域への拡散における距離の効果

- 原子炉建屋から環境への放出に関し、より広域での輸送比の変化を Sr について検討した。
 - 福島第一の事故では、Sr の輸送比は平均が約 0.001 である。 これは、サイト内や近隣での値に近い。
 - チェルノブイリでは、事故の進展が異なるので輸送比が > 0.01
 と高いが、100 から 1,000 km まで一定である。
- 空気中での拡散に関して、組成の変化は小さいとみられる。

Sr 輸送比の距離依存性

原子炉建屋内部で採取された瓦礫への輸送比

- 輸送比は、おおよそ次の 順序であった。
 - $C > Co \ge Cs > Tc > H > Sr$ $> Eu^Pu^Am^Cm$
- Coは不揮発性であり、燃料要素の他からの寄与 (冷却水、クラッド)を考慮 すべきである。
- ランタニドとアクチニドは 同様の輸送比であった。
- 2号機の値が大きく、原子
 炉の依存性が認められた。

建屋内にて採取した瓦礫(1と3号機の1階)、 床塗膜(2号機の5階)への輸送比

種々の瓦礫類の汚染

- ◆ 1号機原子炉・タービン建屋の固体試料への放射性核種の移行ふるまいを検討した。(図1)
 - 損傷燃料からの移行しやすさは、C、I~Se、Cs、Sr~H-3、Tc、Eu~Pu~Am~Cmの順である。
 - 原子炉建屋最上階では、他に比べて大きな輸送比が見られる場合があり、局所的な分布がうかがわれる。
 - CoとNiは輸送比が見かけ上大きいが、不揮発性であるので燃料以外からの寄与が大きいといえる。
 - 汚染水を経由した汚染が重なる場合、Sr の輸送比が増大する。
 - タービン建屋からの試料でUが検出された。U同位体間で輸送比は一致せず、天然由来であることを示す。
- ◆ 輸送比は対数正規分布を示しており(図2)、今後分類や統計的取り扱いを検討する上で考慮すべきで ある。

図2 Puなど核種の移行分布 (対数正規分布によるフィッテイング)

図1 1号機原子炉建屋及びタービン建屋内で採取された瓦礫に係る輸送比

瓦礫への移行における水素 (³H) と炭素 (¹⁴C) の相関

- ³Hと¹⁴Cの輸送比は幅広い 値を取る。また、相関する ように見受けられる。これ は、Csと³H-¹⁴Cの間で輸 送の過程が異なる事を示 す。
 - 4号機試料で相対的に輸 送比が大きい。4号機は3 号機から放射性核種が流 れ込んだが、³Hと¹⁴Cの輸 送が¹³⁷Cs に対して優先的 である事を示唆する。

原子炉建屋の内外で採取された瓦礫の ³Hと¹⁴C輸送比の相関

(つづき) - ³Hと¹⁴Cの生成量との比較 -

- 核燃料中で、³Hと¹⁴Cの生成はそれぞれ核分裂と放射化の寄与 が大きい。
- ¹⁴Cの輸送比は Cs より大きいことから、被覆管の損傷に伴う放出 が示唆される。
 - 燃料から放出された過程が¹³⁷Csなど揮発性の核分裂生成物と 異なった可能性がある。
- ³Hと¹⁴Cの輸送比は放射化による生成量の比と異なるので、³H は FP の寄与が示唆される。
 - ³Hは、燃料に生成したうちの約半分が被覆管のジルカロイに 取り込まれる^{*1}。事故の過程でジルカロイは酸化され水素を放 出したものと思われる。

核燃料に由来する³Hと¹⁴Cの放射能^{*2}

核種	放射化生成物	核分裂生成物	合計
³ H	1.04×10 ⁵	3.37×10 ¹⁵	3.37×10 ¹⁵
¹⁴ C	6.76×10 ¹¹	7.89×10 ⁸	6.77×10 ¹¹

*1 Manson Benedict et al., 清瀬量平訳, "原子力化学工学," 第11章, 4.1 トリチウム, 日刊工業新聞社 (1983).

*2 西原 健司, 岩元 大樹, 須山 賢也, "福島第一原子力発電所の燃料組成評価," JAEA-Data/Code 2012-018 (2012).

汚染ふるまい

滞留水への輸送比の時間依存性

- ³H、⁶³Ni、⁷⁹Se、⁹⁰Srと¹²⁹Iはいず れの滞留水試料からも定量され、 輸送比はおよそ次の順序であっ た。
 - Se > I > H > Cs~Sr > Ni >> Pu
- 変動は1桁ほどに収まる。滞留 する場所の影響は伺えない。
- Srは漸増する傾向を示し、平成 24年からCsと同様となった。事 故の初期においては、Srの寄与 はCsに比べて小さい。
- ²³⁸Puは10⁻⁶程度以下であり、滞 留水への移行は小さい。希土類 元素も同様であると思われる。

Srの滞留水への移行 - 移行プロセスの変化 -

- Srの輸送比は、事故から間もない初期において原子炉ごとに値が異なる。
- 2011年10月頃まで徐々に増加することから、損傷した燃料から冷却水への移行がCsに比べて見かけ上ゆっくりと進行した。
- Srは燃料に固溶し、不揮発性であるから、
 燃料の外周部やクラックに近い場所から
 優先して汚染水へ移行したと考えられる。
- 1号機の値は他に比べて小さく、5月末頃 まで低い。
 - 1号機の汚染水は、2号機を経由して3号機や集中廃棄物処理建屋へ
 移送される。
 - 汚染水の処理が開始されるまでは 他から隔絶されており、また、事故 の初期過程での放出が支配的で あった。
 - 1号機炉心の損傷において水の損
 失が速やかであり、Srの溶出がごく
 小さかったことを示唆する。

汚染ふるまいを推定するための元素分類

- 分析により求められない場合、核種の化学的な性質を元にして推定することとなる。
- 核種の分類について、米国NRCが TMI 事故の経験を元にした分 類を報告している。
- 福島第一原子力発電所の汚染に関しては、事故進展の様子が TMIと異なるので、汚染のふるまいを適切に表現するように検討 する必要がある。

Element groups in NUREG-1465*1

Group	Title	Elements in group
1	Noble gases	Xe, Kr
2	Halogens	l, Br
3	Alkali metals	Cs, Rb
4	Tellurium group	Te, Sb, Se
5	Barium, strontium	Ba, Sr
6	Noble metals	Ru, Rh, Pd, Mo, Tc, Co
7	Lanthanides	La, Zr, Nd, Eu, Nb, Pm, Pr, Sm, Y, Cm, Am
8	Cerium group	Ce, Pu, Np

分析データに基づく元素の分類

- 分析データと輸送比による検討を元にして元素の分類をすると、米国 NRC による分類に対して次の違いがある。
 - H、Cを1つのグループとして加えた。
 - 遷移金属は、Ni や Ag などを加えた。
 - 多価のアクチニドとランタニドをまとめた。
 - また、複数のソースタームの寄与を考慮する必要がある。
 - 今後は、分析データの蓄積に伴い、改訂を検討する。

Group	Title	Element ^{*1}		
		Fuel	Activation	
1	Light elements	Н	С	
2	Alkaline metals	Rb, Cs		
3	Alkaline earths	Sr, Ba	Са	
4	Transition metals	Mo, Tc, Ru, Rh, Pd, Ag, Sn, Sb	Mn, Fe, Co, Ni	
5	Chalcogens	Se, Te		
6	Rare earths,	Y, Zr, Nb, La, Ce, Pr, Nd, Pm,		
	actinides	Sm, Eu, Gd, U, Np, Pu, Am, Cm		
7	Halogens	Br, I	Cl	
8	Noble gases *2	Kr, Xe		

*1 *Element in Italic* was not detected and grouped by chemical similarity.

*2 No consideration on solid waste management.

汚染のモデル

- 燃料損傷の段階における核種の放出に関する仮定 -

- 汚染のふるまいを推定する上で、事故進展過程のモデルは有用であり、燃料損傷段階は次のような過程が考えられる。
 - 冷却水の欠乏、被覆管の酸化
 - ◆ 水蒸気を含む気相への移行
 - → 被覆管中の³H/¹⁴Cの酸化と放出、水蒸気に吸収されての移動
 - 被覆管の損傷、燃料から空気への放出

 - ◇ 燃料粒界からの不揮発性の核種を含めた放出
 - 水冷却に伴う燃料から水への放出
 - ◇ 水溶性物質の放出

空気と水を経由する段階的な放射性核種の輸送モデル

汚染のモデル - 原子炉建屋からの放出に関する仮定 -

- 独立したソースターム
 - 損傷した1、2及び3号機の燃料は独立したソースタームであり、汚染の核種組成は異なる。
 - 他に、冷却水・クラッドによる寄与が認められる。
- 核種の移行過程
 - 媒質(空気と水)により核種の移行が異なる。
 - ¹³⁷Cs-⁹⁰Sr、³H-¹⁴Cと⁶⁰Coは、移行の過程が異なると考えられる。
- 原子炉閉じ込め機能の喪失に伴う汚染の拡大
 - 建屋の外にあっては、汚染は重畳した。
 - 3号機から4号機へ核種は移行した。

空気と水を経由した汚染モデル

^{汚染ふるまい} 分析データの蓄積、データに基づくモデル、その検証へ - おわりにかえて -

- 汚染物・廃棄物の分析データは放射性核種の移行ふるまい
 を検討する重要なデータである。
- 移行ふるまいを理解するためには、要素反応を考慮した検討と比較対照する「双方向」の取り組みが不可欠である。

56

参老沓料

- 事故に由来する廃棄物
 - ガレキ・伐採木等の管理状況,東京電力ホールディングス(株),廃炉・汚染水対策チーム会合/事務局会議,
 月例.
 - 東京電力(株)福島第一原子力発電所 固体廃棄物 保管管理計画,東京電力株式会社,2019 年 6 月版,2019 年6月27日.
- 通常の放射性廃棄物
 - Principles of Radioactive Waste Management Safety Fundamentals, IAEA, Safety Series No. 111-F (1995).
 - Classification of Radioactive Waste, IAEA, No. GSG-1 (2009).
 - Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities, IAEA, IAEA-TECDOC-1380 (2003).

 - 原子力発電所の廃止措置, 電気事業連合会, パンフレット (2016).
 - 放射性廃棄物の工学,長崎晋也,中山真一(共編),オーム社 (2011).
- 分析データ
 - 廃炉・汚染水対策チーム会合/事務局会議,随時報告.
 - → 福島第一原子力発電所の固体廃棄物試料分析(現状までの成果報告), ibid., 第42回, 平成29年5月25日.
 - 東京電力福島第一原子力発電所において採取された汚染水および瓦礫等の分析データ集,浅見 誠 ほか, JAEA-Data/Code 2017-001 (2017).
 - 福島第一原子力発電所事故廃棄物に関する分析データ集 FRAnDLi. https://frandli-db.jaea.go.jp/FRAnDLi/
- 汚染ふるまい
 - Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements, , Y. Koma et al., Radiochimica Acta, 107(9-11), 965–977 (2019).
 - Management of Radioactive Waste after a Nuclear Power Plant Accident, OECD NEA (2016).
 - Estimation of the Inventory of the Radioactive Wastes in Fukushima Daiichi NPS with a Radionuclide Transport Model in the Contaminated Water, A. Shibata et al., J. Nucl. Sci. Technol., 53(12), 1933–1942 (2016).
- 一覧
 - 福島第一原子力発電所の廃棄物・汚染物に関する情報. https://clads.jaea.go.jp/jp/rd/tech-info.html