原子力環境影響評価論 ||

自己紹介

東京育ち、北海道で生活、福島初心者

1981年 北大入学

1990年 農学部作物栄養学研究室助手

2002-2008年 創成科学共同研究機構兼任

2008年 農研機構・北海道農業研究センターに転職

2013年 農研機構・東北農業研究センター福島研究拠

点農業放射線研究センターに異動

2019年 北海道大学大学院農学研究院に転職

福島との関わり

震災前 車で二回通り過ぎただけ

震災後 3月20日に植物科学者に声かけ。5月連休初来福、2011年は13回、2012年は12回訪問。2013年単身赴任、2014年家族+1で移住

* *Lotus japonicus* (Regel) Larsen, ecotype MG-20 (ミヤコグサ)

養分集積に関する変異体解析例

Figure 1, Mutant identification chart of 200 mutants from MG-20

(Chen et al. New Photo. 181, 795-801, 2009)

	1	2	3	4	5	6	7	89	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
В																														
Мо										1		<u>-</u>		.	1	I														
Na																														
Κ						贫]三[回日中	植物	栄養	をワ-	ーク	ショ	ップ	は2	011:	年3人	月27	7-29)日(こ(倉	割)							
Cs																														
Mg						I																								
Ni								17:25 - 17:	40 Ji A	Xing X gene e	IA (Ok ncodin	tayam g a cys	a Univ steine	versity rich p	r) eptide	is inv	olved i	in rice	Al tol	erance										
Са								17:40-18:0	5 Ji a Alu	an Fen ıminiu	g MA (m tran	Okaya sporte	ama U ers in 1	nivers rice	ity)															
Mn								18:05-18:1 18:20-	0 Co W	oncludi orksho	ng rem p dinn	nark .er at l	[vy squ	uare ho	otel															
Sr											•																			
Fe								March 29	Diam		(蛋巛准	a 御士!		いて)																
Cu								9.00-11.00	Disc	ussion	(辰火饭	2 宍 乂 1	友により	(, ()																
Zn								፲	ħ.	Ħ	木		邧	嗭	ħ.	Ē	目上	-												
Cd											/ []					/	RAL	_												
Pb																														

Essential non mineral elements

Beneficial

Well known toxic elements

2011年3月の事故の振り返り

少し振り返り

- 東日本大震災ー津波による東電福島第一原発被害
 (3.11)-----(ベント)
- 福島第一原発 1 号機爆発 (3.12)
- 福島第一原発3号機爆発(3.14)
- 福島第一原発2、4号機爆発(3.15)
- 厚生労働省より食品と水に関する暫定基準値 (3.17)
- ・水、牛乳、ほうれん草で暫定基準値超えの報告(3.17-3.19)
- ・汚染地域からの食品の出荷停止要請(3.21)

緊急時における食品の放射能測定マニュアル 2002年厚生労働省

核種	簡便法(Nal(Tl)シンチレーション サーベイメーター)	ノ高精度分析(ゲルマニウム半導体 測定器)							
放射性ヨウ素	検出限界: 100 Bq/kg 牛乳, 1,000 Bq/kg 葉菜類	検出限界: 1時間測定で約1 Bq/kg							
放射性セシウム		検出限界: 1時間測定で約1 Bq/kg							
原発事故では特に131 による初期被ばくを抑制するこ									
とが重要である。									
4ヶ月で ¹³¹ は	まで減衰する。その後は中								
長半減期核種が問	題となる。								

少し振り返り

震災直後に利用が可能であった主要な機器

サーベイメータ

http://www.rex-rental.jp/anz/tcs-172b.html

- ・ゲルマニウム半導体測定器は限られた台数しかない。
- 放射性物質分析の が少ない。
- 発注しても納期に時間。重量があり設置場所に留
 意。バックグラウンドが高い場所での高精度分析が
 困難。

正確な情報が迅速に得られないことは 1)対策に必要な ができない。 2) が拡散し、不安、不信を増長する。

131|測定簡便法の充実と134Cs, 137Csへの拡充

- サーベイメータを利用した場合の機器毎の変換効率
 が無い
- •131以外の簡易測定法が無い
- が高い(つくば市において室外で 0.2µSv/h、室内で0.1µSv/h).
- 暫定基準値への対応

高いバックグラウンド

緊急時における食品中の放射性ヨウ素測定に用いるNal(Tl)シンチレーションサーバイ メーターの機器校正(2011.4.20) 緊急時における食品中の放射性セシウム測定に用いるNal(Tl)シンチレーションサーバイ

メーターの機器校正(2011.6.20)

Kameya et al. 2011, Nippon Shokuhin Kagaku Kogaku Kaishi, 58(9), 464-469

食総研(2011)

日本アイソトープ協会(2011)

土壌分析の簡便法

Nemoto et al. 2012, Bulletin of the Fukushima Agricultural Technology Centre, 15-18

次を想定する必要がある(国内、国外)

- 事故を想定して を整えておく(ゲルマニウム半導体 測定器及びオペレーター)。
- を活用した
 の整備、想定される放射性物質を測定するための機器校正。
- の放射線レベルが高くなることに留意。測定には が重要。
 - これらに基づいて放射性物質の核種、分布情報を元にした
 迅速な簡易スクリーニングの実施。(
 への対応は残されていることに注意)

2011年3月の福島での風景

直接付着

放射性物質の飛散と降下が発生した
 時点での が、その後の対
 策を考える上で重要。

http://www5b.biglobe.ne.jp/~jakot/hhy_3/

水田は代掻き前。苗の準備前。

畑は牧草地、小麦畑、一部の野菜を 除けば播種前

2011年3月の広葉樹、常緑樹

茶樹における放射性セシウムの分布と対策技術

直接付着

¹³³Cs施用量:5360 (μg/m²)

茶樹における放射性セシウムの分布と対策技術

直接付着

https://amanaimages.com/info/infoRM.aspx?SearchKey=25802012034&GroupCD=0&no=

土壌と放射性セシウム

汚れた土壌

土壌に降下した放射性セシウムは粘土鉱物や有機物と吸 着、結合して下層には降雨によってはほとんど移動しな い。(植物にはわずかであるが移行する)

待っていても影響はなくならない(はある)。 耕作をすると に広がり移動しない。

表層にあることの弊害 空間線量を高める→農作業者の につながる 作物が吸収をする→消費者の につながる

土壌表面の放射性セシウム分布

農地除染:空間線量を下げて農業従事者および関連の人々の外部被ばくの低減

生産物の放射線量を下げて消費者の内部被曝の低減

飯舘村伊丹沢の水田土壌の放射性セシウム濃度

事前サンプリング土壌表層(0-2.5cm)の粒径別の放射性セシウム濃度

式巻き	国際土地	襄学会法による	組成割合	Bq/ kg 各	Bq/ 試料	Bq 割合 %)	
武科/木C	米	位径区分	%)	組成)	全体		
0-2.5cm	粘土	\sim 2 μ m]	8,600	12	
	シルト	20∼2 <i>µ</i> m			31,500	42	
	細砂	200~20µm			30,100	40	
	粗砂	2mm~200µm			4,500	6	

注)0-2.5cm 表層全体の放射線濃度は、74,700 Bq/kg である。採土は平成 23 年 6 月。

www.s.affrc.go.jp/docs/press/110914.htm

2011.9.14農地土壌の放射性物質除去技術(除染技術)について(農林水産技術会議)

土壌へのセシウム吸着メカニズム

2:1型粘土鉱物のFES (様サイト) はカリを多量に施用すると増える (Vandenhove et al., 2003; 中尾2011)

放射性セシウムは次第に粘土鉱物の層間に固定されていき、移行係数は低下する(のでは)。。。ヨーロッパの研究からはそれを支持する報告もある。

土壌の物理的除染(表土はぎとり)

汚れた土壌

福島県農業総合センター

環境省除染ガイドラインに採用

表土はぎ取りの問題点

汚れた土壌

2000万袋以上 汚染した土壌を遮蔽するために周囲には未除染土壌を詰めたフレコン(これも廃棄予定) 移動に?年、元の場所に修復するのにさらに?年。移動した後は どうするのか。。。(があるが。。。)

二段耕プラウによる表層土の埋却

牧草の根の分布図ールートマットを形成する(例)

http://www.nemuro.pref.hokkaido.lg.jp/ss/nkc/wadai/habomaikou03.jpg

深いところに根は分布しない。養分の吸収は表層土壌を中心として。

広範な草地で利用された。。。

ファイトレメディエーション

汚れた土壌

うまくいかなかった成果も成果。 しか回収できなかった。(その後の様々な研究例でも特殊な条件下で最大1%) 回収した後の_____の処理。 耕作により土壌が攪拌されることにより放射性物質が表層から_____に広がる問 題。

降下したセシウムを植物に回収させ るよりも半減期を待ったほうが良 いのでは。

農地の除染

農用地土壌汚染防止法(1969年)ー農用地土壌汚染対策地域の指定、農用地土壌汚染対策計画の策定、汚染状況の常時監視など一<u>放射性物質による汚染については適用除外</u>(第2条3項)

事故を基本的には想定していなかったため、広範囲に放出された放射性物質に対処するための 法的整備が存在しなかった。→「放射性物質汚染対処特措法」ー(平成二十三年三月十一日に 発生した東北地方太平洋沖地震に伴う原子力発電所の事故により放出された放射性物質による 環境の汚染への対処に関する特別措置法)2011年8月26日に成立、30日に公布と一部施 行、2012年1月1日に全面施行 農水省:農産物の安全性の観点

2011年9月14日 農地土壌の放射性物質除去技術(除染技術)について

(表土が10,000-25,000Bq/kgでは耕作をすると耕作土濃度が5,000Bq/kgを超える可能 性があるので表土剥ぎ取り)

(25,000Bq/kg以上の農地は土壌飛散防止を行なった上で5cm以上表土剥ぎ取り→薄く剥 ぎ取ると剥ぎ取った土壌の濃度が100,000Bq/kgを超える可能性がある)

法令上放射性同位元素として取り扱われるもの:

濃度が74,000Bq/kgを超えるか(自然で固体ならば340,000/kg) 密封されているかどうか

放射性Csの場合はまとまった状態で総量37,000Bqを超過すると放射性同位元素となる (74,000Bq/kgであるときには500gを超えると)

→取り扱いが厄介になる(実際には特殊なコンクリートに封入して廃棄)

放射能の規制の歩み

1895 放射線(X線)の発見 レントゲン 1896 放射性物質(放射能を持つ物質-ウラン)の発見 ベクレル ポロニウムの発見、放射性物質の量と放射線の関係 キューリー夫妻 再生不良性貧血で死亡

1910頃 ラジウム塗料の夜行時計 骨ガンの多発(5年後頃から)

1928 国際X線及びラジウム防護委員会(IXRPC)の発足

- 1934 X線作業者の耐容線量(tolerable dose)を約2mSv/day(0.2レントゲン/day) 皮膚に紅斑ができる被曝量-600レントゲン→一ヶ月に1/100の6レントゲンなら大丈夫)
- 第二次世界大戦 傷病者のX線写真解像度向上のためにトロトラスト(トリウムの酸化物) 肝臓ガン、白血病 (日本の調査では20%が肝臓ガン、5%が肝硬変で死亡)

1950 国際放射線防護委員会(ICRP)発足 1950勧告

X線作業者の許容線量 (permissible dose)を約5mSv/week) と引き下げ (1927のX線によるショウジョウバエの突然変異誘発と後代への遺伝の報告) (被曝の影響に貧血、白血病、固形ガン、白内障、遺伝的影響を加味)

放射能の規制の歩み(2)

1949-各国による原爆実験 1954 オブニンスク原子力発電所稼働 1955 原始放射線の影響に関する国連科学委員会(UNSCEAR)の設置 1956 コールダーホール原子力発電所稼働 1958 シッピングポート原子力発電所稼働

1958 ICRP勧告

職業人:年齢Nまでの集積線量Dが50×(N-18)mSvを超えないこと、かつ、

30mSv/三ヶ月を超えないこと→18歳以下は職業として不適。60歳まで継続して職 業とする場合に約1mSv/week (1950勧告の1/5)

公衆:年間5mSv (職業人の約1/10)

1950勧告では"to the lowest level"、1958勧告では"as low as practicable" に変更→リスクベネフィットの考え方の導入

放射能の規制の歩み(3)

1965 ICRP勧告

放射線防護の目的:急性効果の防止かつ

晩発性効果のリスクを容認できるレベルに制限
 職業人(許容線量):年間50mSv
 妊娠中の女性 10mSv以下
 公衆(dose limite 線量限度):年間5mSv(職業人の約1/10)

原爆被曝生存者の追跡データ、妊婦の腹部X線検査の影響調査のデータの蓄積によって 制限の強化

1950勧告では"to the lowest level"、1958勧告では"as low as practicable" に変更→リスクベネフィットの考え方の導入、1965勧告では"as low as readily achievable"

直線・しきい値なし(LNT)モデルにより低線量被曝も評価 10mSv/yの被曝で 0.004%の白血病、固形ガン死を予測(注:低線量被曝の影響は議論が分かれる) 1977 ICRP勧告

職業人(線量限度):年間50mSv 妊娠中の女性 10mSv以下 公衆(線量限度):年間5mSv(職業人の約1/10)

リスクの容認レベルの考え方 職業人:年平均死亡率が10⁻⁴を超えない職業と比較 年間50mSvを連続して被曝した場合は 3.4x10⁻⁴/年の致死率に該当する 建設業、炭鉱労働者に匹敵(参考:日本2017農作業での死亡率1.7x10⁻⁴, 林業での死亡率6.4x10⁻⁴)

公衆:公共輸送機関利用によるリスクと比較 線量限度年間5mSvであれば5x10⁻⁵(参考:日本交通事故2018 2.79x10⁻⁵)

As low as reasonably achievable(ALARA)に変更

放射能の規制の歩み(5)

1985 ICRPパリ声明
 職業人(線量限度):年間50mSv
 妊娠中の女性 2mSv以下
 公衆(線量限度):年間1mSv

疫学データから被曝リスクの増大が原因と推定

1990 ICRP勧告

- 職業人(線量限度):年間50mSvかつ100mSv/5years→5年平均20mSv/year 妊娠中の女性 10mSv以下
- 公衆(線量限度):年間1mSv(職業人の約1/50)

1mSvあたりのガン死リスクは6.0x10⁻⁵ (1977勧告の5倍) ただし、高線量被曝に比べて低線量被曝はガン死リスクは半分と評価して算出

出生から1mSv/yearの被曝の連続での生涯ガン死率は0.4%と推定された (6x10⁻⁵ x 1mSv/year x 65year = 0.4%)

放射能の規制の歩み(6)

2007 ICRP勧告 核事故への対応 緊急時被曝状況:住民の避難への基準として20-100mSv/yearで行政当局が参考レベルを設定して対策をとる 現存被曝状況:1-20mSv/yearで参考レベルを設定する。 計画被曝状況(事故が起きていない状況) :職業人 :公衆

1990 ICRP勧告

職業人(線量限度):年間50mSvかつ100mSv/5years→5年平均20mSv/year 妊娠中の女性 10mSv以下(妊娠期間) 公衆(線量限度):年間1mSv→5年間の平均が1mSvを超えないという意味

1mSvあたりのガン死リスクは5.5x10⁻⁵ (1990勧告より0.5低下)

でも、低線量での影響が不確実であり、長期間の低線量被曝の影響を予想することは不 適切(わからないということ。安全側にも記載ができない?)

しかし、放射線防護体型に関していかなる基本的な変更の必要性を示さなかった。19 91年以降に決められた現存の数値的勧告は有効である。

事故による放射線管理の目安(ICRP)

事故後の対応段階	-	事故による年間 被曝量の目安
緊急事態期	솨	20 ~ 100mSv
事故収束後の復旧期	策	1~20mSv
平常時		1mSv以下

対策:モニタリング、避難、食品流通管理、作付け制限、除染、農作物低減対策など
ICRP 1990年勧告による線量限度

公衆被曝 実効線量 1mSv/y

職業被曝(被曝によるベネフィットがある) 実効線量 50mSv/y 及び100mSv/5y 内部被曝との合計:内部被曝に係る摂取限度は20mSv/y 妊娠女性従事者:申告後の妊娠期間一腹部表面において2mSv

追加被ばく線量年間1ミリシーベルト(mSv)を、一時間当たりに換算すると、毎時0.19マイクロシーベルト(μSv)と考えられます。(1日の うち屋外に8時間、屋内(遮へい効果(0.4 倍)のある木造家屋)に16 時間滞在するという生活パターンを仮定) 毎時0.19マイクロシーベルト(μSv)×(8時間 + 0.4 × 16 時間) × 365 日= 年間1ミリシーベルト(mSv) 測定器で測定される放射線には、事故由来の放射性物質による放射線に加え、大地からの放射線(毎時0.04マイクロシーベルト(μSv))が含ま れます。このため、測定器による測定値としては、 0.19 (事故由来分)+0.04 (自然放射線分)=毎時0.23マイクロシーベルト(μSv) である場合、年間の追加被ばく線量が1ミリシーベルト(mSv)になります。

ICRP 2007勧告 100mSvでガン死が0.5%増加

被曝がなくても30%-50%はガンで死亡 野菜不足 0.4-0.7% 果物不足 0.7-0.9%

単純に比較して良いのか? 利益のない被曝によるガン発生率の上昇

1万人が100mSv被曝すると50件のガン死 1億人では。。。

放射能と生活習慣によって癌になるリスク

要因	癌になるリスク	
2Svを浴びた場合		
喫煙	1.6倍	
毎日3合以上飲酒		
1-2Svを浴びた場合	1 / 位	
毎日2合以上飲酒	1.41	
やせすぎ	1.29倍	
肥満	1.22倍	
運動不足	1.15-1.19倍	
200-500mSvを浴びた場合	1.16倍	
塩分の取りすぎ	1.11-1.15倍	
100-200mSvを浴びた場合	1.08倍	
野菜不足	1.06倍	
受動喫煙	1.02-1.03倍	

(国立がん研究センター調べ)

交通戦争

農作業事故死

林作業事故死

これらの低減のためへの大々的な関心

土壌から植物への移行-移行係数による評価

内部被曝抑制

の放射性核種の放射能濃度(Bq/kg)

の放射性核種の放射能濃度(Bq/kg)

土壌中の放射性物質の濃度から植物への放射性物質の濃度を推定するための係数 (Transfer Factor : TF) あるいは(Concentration Ratio : CR)

TF計算例:	暫定基準値(2011年)			
可食部の放射性	ECs濃度 500 Bq/kg			
→ TF ≤ 0.1と考えて、2011年4月、≥5000 Bq/kgの農地での作付け制限区域設定へ				
	移行係数 500/5000 = 0.1 土壌中の放射性Cs濃度 5000 Bq/kg			

Aggregated transfer factor

$$T_{agg}(m^{2}kg^{-1}) = \frac{Bq kg^{-1} \text{ (plant dry weight)}}{Bq m^{-2} \text{ (deposited on soil)}}$$

農作物以外で。ただし、栽培期間中のフォールアウトによる汚染ではこちらを利用すべき

Geochemical transfer factor

Bq m⁻² (in plant biomass)

T_{geo} =

Bq m⁻² (deposited on soil)

グローバルフォールアウト由来¹³⁷Cs濃度の推移

内部被曝抑制

2011年の交換性カリと玄米放射性Cs濃度

内部被曝抑制

福島県の水稲の慣行的なカリの施 肥基準は15-20mgK₂O/100g

1960年~、全国各地でのTF長期モニタリングデータ

内部被曝抑制

グローバルフォールアウトの影響

2011年度産の暫定基準値超過事例の発生

内部被曝抑制

の水田でも、限ら れた農地において 500 Bq/kg超えの玄 米が生産された

福島県における2011年産玄米の放射性Cs濃度(農林水産省, 2012)

2011年の玄米生産における土壌と玄米の関係

土壌及び米の放射性セシウム濃度の関係(福島県等,2011)

栽培後土壌中交換性カリ含量と玄米放射性Cs移行係数

内部被曝抑制

义

XXIN LI SIVY

エーにアメティイ

カリは不足していたのか?

内部被曝抑制

従来15-20mg/100gの交換性カリが推奨されてきた(福島県)。1999-2003 のモニタリング結果の平均値は21.5mg/100g

放射性セシウム吸収抑制対策 H24、25、26、27、28年、2 9年、30年、31年

改善目標:25mgK₂O/100gとする。 速効性の塩化カリウムを利用する。 慣行法に基づく基肥に嵩上げする。 「ふくしまからはじめよう。」農業技術情報 第24号:水稲の放射性セシウム対策としてのカリ施用 (H24.4.10) 第34号:水稲次年度放射性セシウム吸収抑制対策(カリ) (H24.12.14) 第44号:26年度産米の放射性セシウム吸収抑制対策 (H26.2.7)

米作付け制限区域 (平成23、24年)

26年産米の作付制限等の対象地域(25年産との比較)

内部被曝抑制

27年産米の作付制限等の対象地域(26年産との比較)

内部被曝抑制

作付制限

作付 営農は不可。

農地保全 試験栽培

除染後農地の保全管福や市西村の管福の下で試験栽培を実施。

作付再開準備

管谥計画を策定し、作付再開に向けた実 証栽培等を実施。

全量併融出荷管隘

管福計画を策定し、全てのほ場で吸収抑制対策 を実施、もれなく検査 全量管福 全袋検査)し 順次出荷。

● 福島第一原子力発電所

28年産米の作付制限等の対象地域(27年産との比較)

内部被曝抑制

29年産米の作付制限等の対象地域(28年産との比較)

内部被曝抑制

内部被曝抑制

Changes of the radioactive Cs concentration of brown rice after 2011.3.11 (30kg bag) (Fukushima prefecture)

						Monitored
		≤ 50 Bq/kg	51-75 Bq/kg	76-100 Bq/kg	100 Bq/kg <	number
FY 2011	actual no.	20,295	364	219	311	21,189
	(%)	95.78%	1.7179%	1.0336%	1.4677%	100%
FY 2012	actual no.	10,343,548	1678	389	71	10,345,686
	(%)	99.98%	0.0162%	0.0038%	0.0007%	100%
FY 2013	actual no.	10,951,351	492	323		10,952,194
	(%)	99.99%	0.0045%	0.0029%		100%
Fy 2014	actual no.	11,014,636	1	1		11,014,640
	(%)	100%	0.00001%	0.00001%		100%
Fy 2015	actual no.	10,496,518	4	0	0	10,439,072
	(%)	100%	0.00004%	0	0%	100%
Fy 2016	actual no.	10,264,859	0	0	0	10,264.859
	(%)	100%	0%	0%	0%	100%
Fy 2017	actual no.	9,976,522	0	0	0	9,997,652
	(%)	100%	0%	0%	0%	100%
Fy 2018	actual no.	9,251,056	0	0	0	9,251,056
	(%)	100%	0%	0%	0%	100%
FY 2019	actual no.	9,466,562	0	1	0	9,466,563
(2020.6.17)	(%)	100%	0%	0%	0%	100%

福島県浜通りで観察された放射性セシウムの二次汚染ー大豆(2013)

Soybean exceeded the standard value in Namie town in 2013, two years after the accident.

Radioactive Cs behavior in the experimental fields in Namie town (ca. 10km from FDNPP) and Nakadori district (ca. 60km form FDNPP) in 2013.

除染圃場

http://www.maff.go.jp/j/kanbo/joho/saigai/fukusima/pdf/25koms_h26_01.pdf

Imaging plate of soybean leaves

Samples form Namie town (2013)

Samples form Nakadori district (ca. 60 km from FDNPP) (2013)

(MAFF, 2015)

Fig. Visible image (Left) and radioactivity image (Right).

Leaves were washed by ultrasonic cleansing (5min).

http://www.maff.go.jp/j/kanbo/joho/saigai/fukusima/pdf/25koma_h26_01.p

福島県浜通りで観察された放射性セシウムの二次汚染ー水稲(2013)

福島県浜通りで観察された放射性セシウムの二次汚染ー水稲(2013)

Effect of secondary attachment on rice TF (2013)

		Brown rice			
Sample ID	HG ^{*2} LG ^{*2} Average		Paddy field soil	Transfer factor	
MSG1	1,628.2±7.8	59.5 ± 0.3	152	315.3±1.9	0.4824
MSG4	$2,220.4 \pm 11.4$	49.3±0.2	167	290.4 ± 1.8	0.5767
MSG7	$1,271.3 \pm 6.9$	68.4 ± 0.4	161	427.8 ± 2.0	0.3754
MSG8	1,380.4±6.0	79.7±0.5	172	1,792.1±8.3	0.0960
MSG11	1,345.6±6.0	36.7±0.2	80	449.9 ± 2.1	0.1788
MSG14	843.2±3.9	40.0 ± 0.4	76	510.9 ± 2.4	0.1481
MSG17	1,197.2±6.2	55.5 ± 0.3	106	$1,054.8 \pm 5.7$	0.1001
MSG18	1,590.5±2.1	33.2 ± 0.7	72	$1,222.5 \pm 5.8$	0.0590
MSG19	938.3±3.2	29.9 ± 0.6	50	619.8 ± 2.9	0.0805
MSG20	1,319.1±2.0	47.6 ± 1.0	115	369.4±1.7	0.3111
MSG38		_	18.5 ± 0.1	1,590.7 ± 7.2	0.0116
MSG39	_	_	3.7±0.0	2,144.9±9.5	0.0017
MSG41	—	_	24.2 ± 0.1	1,860.7±8.4	0.0130
	Sample ID MSG1 MSG4 MSG7 MSG8 MSG11 MSG14 MSG14 MSG17 MSG18 MSG19 MSG19 MSG20 MSG20 MSG38	Sample ID HG*2 MSG1 1,628.2±7.8 MSG4 2,220.4±11.4 MSG7 1,271.3±6.9 MSG8 1,380.4±6.0 MSG11 1,345.6±6.0 MSG14 843.2±3.9 MSG17 1,197.2±6.2 MSG18 1,590.5±2.1 MSG19 938.3±3.2 MSG38 - MSG38 - MSG39 - MSG41 -	I34+137Cs con Brown rice Sample ID HG*2 LG*2 MSG1 1,628.2±7.8 59.5±0.3 MSG4 2,220.4±11.4 49.3±0.2 MSG7 1,271.3±6.9 68.4±0.4 MSG8 1,380.4±6.0 79.7±0.5 MSG11 1,345.6±6.0 36.7±0.2 MSG14 843.2±3.9 40.0±0.4 MSG15 1,197.2±6.2 55.5±0.3 MSG18 1,590.5±2.1 33.2±0.7 MSG19 938.3±3.2 29.9±0.6 MSG20 1,319.1±2.0 47.6±1.0 MSG38 - - MSG39 - - MSG41 - -	I34+137Cs conc. (Bq kg ⁻¹)*1I34+137Cs conc. (Bq kg ⁻¹)*1Sample IDHG*2AverageMSG1 $1,628.2\pm7.8$ 59.5 ± 0.3 152 MSG4 $2,220.4\pm11.4$ 49.3 ± 0.2 167 MSG7 $1,271.3\pm6.9$ 68.4 ± 0.4 161 MSG8 $1,380.4\pm6.0$ 79.7 ± 0.5 172 MSG11 $1,345.6\pm6.0$ 36.7 ± 0.2 80 MSG14 843.2 ± 3.9 40.0 ± 0.4 76 MSG17 $1,197.2\pm6.2$ 55.5 ± 0.3 106 MSG18 $1,590.5\pm2.1$ 33.2 ± 0.7 72 MSG19 938.3 ± 3.2 29.9 ± 0.6 50 MSG39 $ 18.5\pm0.1$ MSG39 $ 24.2\pm0.1$	I34+137Cs conc. (Bq kg ⁻¹) ⁻¹ I34+137Cs conc. (Bq kg ⁻¹) ⁻¹ ISC conclose constant relations ISC constant relations ISC constant relations ISC constant relations ISC constant relations

Table 1. Radiocaesium concentrations in brown rice and paddy field soil in the southern area of Minamisoma City. ^{*1}Measured value \pm counting error. The radionuclide concentrations were corrected to the values on 1 October of each year. ^{*2}HG: highly contaminated grains. LG: less contaminated grains.

The origin of contaminant was not the surrounding soil.

土壌と付着した放射性セシウムの

		Brow		
Year	Sample ID	HG ^{*2}	Average	Paddy field soil
2013	MSG1	0.996 ± 0.010	—	0.912 ± 0.011
	MSG4	0.990 ± 0.011	—	0.923 ± 0.012
	MSG7	0.999±0.011	—	0.914 ± 0.009
	MSG8	1.017 ± 0.009	—	0.908 ± 0.009
	MSG11	1.004 ± 0.009	—	0.940 ± 0.009
	MSG14	1.007 ± 0.010	—	0.926 ± 0.009
	MSG17	1.004 ± 0.011	—	0.921 ± 0.010
2014	MSG38	_	0.938 ± 0.009	0.919 ± 0.009
	MSG39	_	0.910 ± 0.011	0.885 ± 0.008
	MSG41		0.937 ± 0.009	0.936 ± 0.009

Table 3. ¹³⁴Cs/¹³⁷Cs radioactivity ratio in brown rice and paddy field soil in the southernmost section of Minamisoma City^{*1}. ^{*1}Ratio value \pm uncertainties calculated by means of propagation of counting errors. The ¹³⁴Cs/¹³⁷Cs radioactivity ratios of the samples were corrected to the values on 11 March 2011. ^{*2}HG: highly contaminated grains.

福島県中通りで玄米の基準値超過2件は。。。(2014)

•

- ▶ 2011年(移行抑制対策実施前のカリ施用基準)
 - 収穫時交換性カリ含量が5mg/100gを下回る水田が存在した

農家が散見された

- 稲わらすき込みにより交換性カリ含量が高まることが示唆された
- ▶ 今後も土壌の放射性セシウムは
 - 収穫時
 が適切に維持される必要がある
 - 施用基準を守る。積極的に土壌診断を
 - 有機物還元(稲わらすき込み、堆肥施用)が有効

土壌中の放射性セシウム

- ▶ 放射性セシウムの自然度減衰により、2017年の放射性セシウム濃度(¹³⁴Csと ¹³⁷Csの合計値)は、2011年の半分程度にまで減少する
- ▶ ただし、今後の減少速度は小さい

移行係数の作物間差

(ダイズ、ソバの放射性セシウム濃度が高くなる可能性のある地域では50mgK₂O/100gを目標とする)

ダイズにおいてもカリは基肥施用が最も効果が高い

水稲以外

播種前施用が最も放射性セシウム吸収抑制効果が高い

(平成27年度放射線関連技術支援情報)

そばでも土壌の交換性カリを増やすと放射性セシウム濃度は低下する

水稲以外

問題が多い牧草

適正なカリ施肥により、家畜に給与できる牧草の生産が必要

農研機構(2015):牧草中放射性セシウム濃度低減のために、草地更新後もカリ施肥継続は必要 https://www.naro.affrc.go.jp/project/results/laboratory/nilgs/2014/14_079.html

[対策]

土壌の交換性カリ濃度を迅速に評価し、移行抑制をさせつつカリ過剰にならないよう にする技術開発が求められている

続く基準値超え(牧草)

調査年度	調査点数	50 Bq/kg以下	50 - 100Bq/ kg	100 Bq/kg超
平成24年度	1,893 (100%)	1,578 (83.4%)	161 (8.5%)	154 (8.1%)
平成25年度	18,158 (100%)	17,081 (94.1%)	725 (4.0%)	352 (1.9%)
平成26年度	10,319 (100%)	9,999 (96.9%)	230 (2.2%)	90 (0.9%)
平成27年度	10,999 (100%)	10,678 (97.1%)	176 (1.6%)	145 (1.3%)
平成28年度	4,066 (100%)	3,898 (98.0%)	57 (1.4%)	25 (0.6%)

http://www.maff.go.jp/mobile/kinkyu/tohoku_saigai/03/siryo/einen.html から作成

二段耕プラウによる表層土の埋却(反転耕)

写真 土壌断面調査の一例 ※プラウによる土壌反転状況の確認 ※土壌の硬さは、埋没リター・ルートマッ ト層では161キロパスカルと柔らかく、それ以 外では617~838キロパスカルと硬い状態が確 認された。 草地での観察から根は10cm程度にルート マットを形成して30cmまでは達しない。 はず。。。

草地更新後の基準値超えの要因?

その後:良く攪拌して表層の有機物層は土 壌と接触させてから、反転耕あるいは深耕 をすることが推奨されている。

「ふくしまから始めよう。」農業技術情報(48号) 2015.3.7

後から考えれば当たり前だったことの一つ

穀物、豆や根菜類では通常は問題にならない。

大量にカリウムを散布すると茎葉には多く蓄積するが、収穫部位のカリ含有率にはほ とんど影響をしない → イネの食味が低下するとの意見が多くあったが、食味試 験でことどこく否定されている。

茎葉が収穫物である場合には。 見逃していた牧草の問題。

牧草中のカリウム濃度がカルシウムとマグネシウムの濃度 に対して高くなると、牛がマグネシウム吸収が十分にできなくなり死に至る。震 災前から知られていることであり、牧草の世界ではカリウムはあまりやらないこ とで徹底されていた。

により、放射性セシウムを吸収 しにくいコシヒカリ(Cs低吸収コシヒカリ)の開発に成功。

lacksquare

コシヒカリ

Cs低吸収コシヒカリ

複数存在するカリウムの輸送体

Identification method	Transporter	Mechanism	Function	Expression	Cs ⁺ permeability	Reference
Pattern/presence	АКТ1	Channel	K ⁺ uptake	Epidermis, cortex, endodermis	Probably?	Gaymard <i>et al.</i> (1996); Lagarde <i>et al.</i> (1996); Bertl <i>et al.</i> (1997); Hirsch <i>et al.</i> (1998)
Electrophysiology	SKT1 SKT2 SKT3	Channel	K ⁺ uptake	Root Vasculature Root	Not known Not known Not known	Zimmermann et al. (1998) Czempinski et al. (1999)
	KAT1	Channel	K ⁺ uptake	Vasculature	Yes	Schachtman <i>et al.</i> (1992); Nakamura <i>et al.</i> (1995)
	AtKC1	Channel	K ⁺ uptake	Root	Not known	Dreyer et al. (1997)
	SKOR1	Channel	K ⁺ efflux to xylem	Stele	$P_{\rm Cs}/P_{\rm K} = 0.15$	Gaymard et al. (1998)
	KCO1	Channel	K ⁺ efflux	Root	Not known	Czempinski et al. (1997, 1999)
	AtKUP1	$\rm K^+/H^+$ symport?	K ⁺ uptake	Root	Probably?	Fu & Luan (1998); Kim <i>et al.</i> (1998)
	AtKUP2	$\rm K^+/H^+$ symport?	K ⁺ uptake	Root	Probably?	11
	AtKUP3	K^+/H^+ symport?	K ⁺ uptake	Root	Probably?	11
	AtKUP4	K^+/H^+ symport?	K ⁺ uptake	Root	Probably?	11
	HvHAK1	$\rm K^+/H^+$ symport?	K ⁺ uptake	Root	Probably?	Santa-Maria et al. (1997)
	HKT1	K ⁺ /Na ⁺ symport	K ⁺ uptake	Cortex	No	Schachtman & Schroeder (1994); Gassmann <i>et al.</i> (1996)
	KEA1	K^+/H^+ antiport?	K ⁺ efflux ?	Root	Not known	Yao et al. (1997)
	LCT1	Not known	Not known	Root	Probably?	Schachtman et al. (1997)
	K ⁺ /H ⁺ symport		K ⁺ uptake		Not known	Maathuis & Sanders (1994)
	KIR	Channel	K ⁺ uptake		$P_{\rm Cs}/P_{\rm K} = 0.39 - 0.43$ $P_{\rm Cs}/P_{\rm K} = 0.07$	Wegner & Raschke (1994) Maathuis & Sanders (1995)
	KORC	Channel	K ⁺ efflux		$P_{\rm Cs}^{\rm O}/P_{\rm K}^{\rm R} = 0.12$ $P_{\rm Cs}/P_{\rm K} = 0.31$	Roberts & Tester (1997b)
	NORC	Channel	Cation efflux		$P_{Cs}^{Cs'} = P_{\kappa}$	Wegner & Raschke (1994)
	VIC	Channel	Cation uptake		$P_{\rm Cs}^{\rm Cs}/P_{\rm K}=0.85$	White & Tester (1992); White (1997, 1999)
	DACC	Channel	Ca ²⁺ influx		$P_{\rm Cs}/P_{\rm K} = 0.85$	White (1998, 2000)
	HACC	Channel	Ca ²⁺ influx		Not known	White (2000)

Table 1. Potassium (K^+) transporters identified in root cells from their gene expression pattern and/or presence in root cell cDNA libraries, or electrophysiologically

White and Broadley, 2000

K+チャネル系、HAK系、KUP系、VICCs 系

High affinity potassium transporter

Potassium uptake permease

Voltage-insensitive cation channels

図1 植物の根において低親和性K⁺輸送機構と高親和性K⁺輸送機構を構成する輸送体群

野田、古川 2018

• により、放射性セシウムを吸収しにくい いコシヒカリ(Cs低吸収コシヒカリ)の開発に成功。

Rai, H., Shinano, T. et al. 2017 PCP

除染後農地の営農再開に向けた対策

肥沃度 土壌保全 雑草管理 鳥獣害

今後の展開

① 移行抑制技術の高度化による負担軽減(農家及び行政?)
② 周辺環境での放射性物質動態が農産物に与える影響評価
③ 農業は農産物を生産するだけではない(山菜、ジビエも含めた地域の産物の活用は伝統文化と直結)→大規模化が地域再生の鍵になるのか?

交換性カリ濃度を一定水準以上に高めるという科学 的手法でなんとか抑制している。

必要がある)

など

リスクは複合的に発生する。 を総合的に判断する必要がある。

論文(放射能対策関連)

- 121. Kobayashi, D., Okouchi, T., Yamagami, M. and Shinano, T. Verification of radiocesium decontamination from farmlands by plants in Fukushima. Journal of Plant Research 127, 51-56 (2014).
- 125. Shinano, T.*, Watanabe, T., Chu, Q., Kobayashi, D., Okouchi, T., Matsunami, H., Nagata, O., Okazaki, K. and Nakamura, T. Varietal difference in radiocesium uptake and transfer from radiocesium deposited soils in the genus Amaranthus. Soil Science and Plant Nutrition 60, 809-817 (2014).
- 127. Eguchi, T., Ohta, T., Ishikawa, T., Matsunami, H., Takahashi, Y., Kubo, K., Yamaguchi, N., Kihou, N. and Shinano, T. Influence of the nonexchangeable potassium of mica on radio cesium uptake by paddy rice. Journal of Environmental Radioactivity 147, 33-42 (2015).
- 128. Kubo, K., Nemoto, K., Kobayashi, H., Kuriyama, Y., Harada, H., Matsunami, H., Eguchi, T., Kihou, N., Ota, T., Keitoku, S., Kimura, T. and Shinano, T. Analyses and countermeasures for decreasing radioactive cesium in buckwheat in areas affected by the nuclear accident in 2011. Field Crops Research 170, 40-46 (2015).
- 130. 信濃卓郎 農産物への放射性セシウムの移行抑制対策. JATAFFジャーナル 3, 24-29 (2015).
- 132. 松波寿弥, 申文浩, 高橋義彦, 北島枝織, 土屋貴史, <u>信濃卓郎</u> ゲル化法を用いた懸濁物質を含む農業関連水試料中の放射性セシウムの定量 Radioisotopes 64, 681-686 (2015).
- 133. Kubo, K., Kobayashi, H., Fujita, M., Ota, T., Minamiyama, Y., Watanabe, Y., Nakajima, T. and <u>Shinano, T.</u> Varietal differences in the absorption and partitioning of cadmium in common wheat (Triticum aestivum L.). Environmental and Experimental Botany 124, 79-88 (2016).
- 135. Matsunami, H., Murakami, T., Fujiwara, H. and <u>Shinano, T.</u> Evaluation of the cause of unexplained radiocaesium contamination of brown rice in Fukushima in 2013 using autoradiography and gamma-ray spectrometer. Scientific Reports 6, 20386 (2016).
- 136. Kubo, K., Kobayashi, H., Nemoto, K., Hirayama, T., Matsunami, H., Ichihashi, Y., Ota, T., Keitoku, S. and Shinano, T. Decreasing radioactive cesium in lodged buckwheat grain after harvest. Plant Production Science 19, 91-95 (2016).
- 139. 本間健一, 高野博幸, 小林航, 佐々木忠志, 高橋祐司, <u>信濃卓郎</u>, 八田珠郎, 万福祐造, 碓井次郎 乾式Cs除去技術の概要と飯舘村蕨平における仮設資材化実証調査委託業務について. 環境 放射能除染学会誌 4, 165-172 (2016).
- 141. Shinano, T.* Mitigation of radioactive contamination from farmland environment and agricultural products. Modern Environmental Science and Engineering 2, 454-461 (2016).
- 144. 保高徹生, 申文浩, 思田裕-, <u>信濃卓郎</u>, 林誠二, 塚田祥文, 青野辰雄, 飯島和毅, 江口定夫, 大野浩-, 吉田幸弘, 上東浩, 北村清司, 久保田富次郎, 野川憲夫, 吉川夏樹, 山口裕顕, 末木啓 介, 辻英樹, 宮津進, 岡田往子, 栗原モモ, Sandor Tarjan, 松波寿弥, 内田滋夫. 陸水中における微量溶存態放射性セシウムの濃縮法の比較. 分析化学 66, 299-307 (2017).
- 146. Rai, H., Yokoyama, S., Satoh-Nagasawa, N., Furukawa, J., Nomi, T., Ito, Y., Fujinura, S., Takahashi, H., Suzuki, R., Yousra, E., Goto, A., Fuji, S., Nakamura, S., Shinano, <u>I.</u>, Nagasawa, N., Wabiko, H. and Hattori, H. Caesium uptake by rice roots largely depends upon a single gene, HAK1, which encodes a potassium transporter. Plant and Cell Physiology 58(9), 1486-1493 (2017).
- 147. Kubo, K., Fujimura, S., Kobayashi, H., Ota, T. and Shinano, T. Effect of soil exchangeable potassium content on cesium absorption and partitioning in buckwheat grown in a radioactive cesium-contaminated field. Plant Production Science 20, 396-405 (2017).
- 148. Kubo, K., Hirayama, T., Fujimura, S., Eguchi, T., Nihei, N., Hamamoto, S., Takeuchi, M., Saito, T., Ota, T. and <u>Shinano, T.</u> Potassium behavior and clay mineral composition in the soil with low effectiveness of potassium application. Soil Science and Plant Nutrition 64, 265-271 (2018).
- 149. 好野奈美子, 堀井幸江, 村上敏文, 松波寿弥, 万福裕造, <u>信濃卓郎</u> 野焼きを想定した雑草の燃焼による放射性セシウムの動態. 環境放射能除染学会誌 6, 91-99 (2018).
- 150. Ishikawa, J., Fujimura, S., Kondo, M., Murai-Hatano, M., Goto, A. and Shinano, T. Dynamic changes in the Cs distribution throughout rice plants during ripening period, and effects of the soil-K level. Plant and Soil 429, 505-518 (2018).
- 151. Yamamura, K., Fujimura, S., Ota, T., Ishikawa, T., Saito, T., Arai, Y. and Shinano, T. A statistical model for estimating the radiocesium transfer factor from soil to brown rice using the soil exchangeable potassium content. Journal of Environmental Radioactivity 195, 114-125 (2018). https://doi.org/10.1016/j.jenvrad.2018.04.026
- 152. Ogasawara, S., Eguchi, T., Nakao, A., Fujimura, S., Takahashi, Y., Matsunami, H., Tsukada, H., Yanai, J. and Shinano, T. Phytoavailability of 137Cs and stable Cs in soils from different parent materials in Fukushima, Japan. Journal of Environmental Radioactivity 198, 117-125 (2019).
- 153. Kubo, T., Kobayashi, H., Fujimoto, R., Ota, T. and <u>Shinano, T</u>. Towards the partial resumption of agriculture with buckwheat cultivation in fields physically decontaminated of radioactive cesium after the nuclear power plant accident in 2011: A case study in Yamakiya District, Fukushima. Plant Production Science. 22(2), 159-167 (2019)

- 155. Furukawa, M., Takagi, K., Matsunami, H., Komatsuzaki, Y., Kawasaki, T., <u>Shinano, T.</u> and Takagai, Y. Rapid Quantification of Radioactive Strontium-90 in Fresh Foods via Online Solid-Phase Extraction-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry and Its Comparative Evaluation with Conventional Radiometry, ACS Omega (accepted for publication in 13 June, 2019)
- 156. Kurihara, M., Yasutaka, T., Aono, T., Ashikawa, N., Ebina, H., Iijima, K., Kanai, R., Karube, Z., Komai, Y., Kubota, T., Maehara, Y., Maeyama, T., Okizawa, Y., Ota, H., Otosaka, S., Sakaguchi, A., Tagomonri, H., Taniguchi, K., Tomita, M., Tsukada, H., Hayashi, S., Lee, S., Miyazu, S., Shin, M., Nakanikshi, T., Nishikiori, T., Onda, Y., Shinano, T. and Tsuji, H. Repeatability and reproductivity of measurements of low dissolved radiocesium concentrations in freshwater using different pre-concentration methods. Journal of Radioanalytical and Nuclear Chemistry **322(2)**, 477-485 (2019) DOI: 10.1007/s10967-019-06696-2
- 157. Tsuji, H., Shin, M., Taniguchi, K., Arai, H., Kurihara, M., Yasutaka, T., Kuramoto, T., Nakanishi, T., Lee, S., Shinano, T., Onda, Y. and Hayashi, S. Factors controlling dissolved ¹³⁷Cs concentrations in East Japanese rivers. The Science of the Total Environment **697**, (2019). DOI: 10.1016/j.scitotenv.2019.134093
- 159. Tagami, K., Uchida, S., Shinano, T. and Pröehl, G. Comparisons of effective half-lives of radiocaesium in tea plants after two nuclear accidents, Fukushima and Chernobyl. Journal of Environmental Radioactivity **213**, (2020). DOI: 10.1016/j.jenvrad.2019.106109
- 160. Ogasawara, S., Nakao, A., Eguchi, T., Ota, T., Matsunami, H., Yanai, J. and <u>Shinano, T.</u> The extractability of potassium and radiocaesium in soils developed from granite and sedimentary rock in Fukushima, Japan. Journal of Radioanalytical and Nuclear Chemistry **323(1)**, 633-640 (2020). DOI: 10.1007/s10967-019-06971-2
- 161. Hachinohe, M., Fujimoto, R., Shinano, T., Kotake-Nara, E., Hamamatsu, S. and Kawamoto, S. Reduction in the radiocesium in meats of the sika deer and wild boar by cooking. Journal of Food Protection 83(3), 467-475 (2020). DOI: 10.4315/0362-028X.JFP-19-409
- 162. Kubo, K., Kobayashi, H., Nitta, M., Takenaka, S., Nasuda, S., Fujimura, S., Takagi, K., Nagata, O., Ota, T. and <u>Shinano, T.</u> Variations in radioactive cesium accumulation in wheat germplasm from fields affected by the 2011 Fukushima nuclear power plant accident. Scientific Reports **10**, 4 3744 (2020). DOI: 10.1038/s41598-020-60716-w
- 163. Hachinohe, M. and Shinano, T. Large-scale sampling and radioactivity analysis of agricultural soil and food during nuclear emergencies in Japan: Variations over time in foodstuffs inspection and sampling. Journal of Environmental Radioactivity 2020. https://doi.org/10.1016/j.jenvrad.2020.106262
- 164. Hachinohe, M. and Shinano, T. Large-scale agricultural soil and food sampling and radioactivity analysis during nuclear emergencies in Japan: Measurements for routine and emergency monitoring. Journal of Environmental Radioactivity. 2020. https://doi.org/10.1016/j.jenvrad.2020.106265
- 166. Dercon, G., Blackburn, C., Onda, Y., Shinano, T., Sweeck, L., Lee Zhi Yi, A. and Fesenko, S. Sampling, analysis and modelling technologies for large-scale nuclear emergencies affecting food and agriculture. Journal of Environmental Radioactivity. 2020. https://doi.org/10.1016/j.jenvrad.2020.106174

雑誌・書籍

- 14. 久保堅司, <u>信濃卓郎</u> 農研機構東北農業研究センター 農業放射線研究センターの紹介. 根の研究, 22, 167 (2013).
- 15. 信濃卓郎 農業再建への研究者としての取り組み. 科学技術コミュニケーション 17,85-91 (2015).
- 16. 早岡英介, 久保田直, <u>信濃卓郎</u>, 本田紀生 パネルディスカッション〜福島の再生と科学技術コミュニケーション〜. 科学技術コミュニケーション 17,99-112 (2015).
- 17.Saito, T., Takahashi, K., Murakami, T. and <u>Shinano, T.</u> Analysis of Factors Causing High Radiocesium Concentrations in Brown Rice Grown in Minamisoma City. In Radiological issues for Fukushima's revitalized future, Springer, pp 189–198 (2016). ISBN 978-4-431-55848 -4
- 18. 信濃卓郎 ICOBTE2017 Symposium "農地環境の放射性物質の長期動態と制御"主催報告.日本土壌肥料学雑誌, 88, 497 (2017).
- 19. 信濃卓郎 作物生産向上のための根圏環境制御に関する植物栄養学的研究,日本土壌肥料学雑誌,89,353-356 (2018).
- 20. 信濃卓郎 農業再建への道筋 カリウムで放射性物質移行抑制 農地ごとに適切な濃度管理を, グリーンパワー, 12, 10-11, (2018)
- 21. 信濃卓郎 農業現場における放射能対策の現状と今後 北海道土壌肥料研究レター2号 29-35 (2019)